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Chapter 1

Introduction

1.1 Example: Heat diffusion in an insulating solid

The central problem of equilibrium thermodynamics is to determine the equi-
librium state that a system reaches after removal of constraints. An example
of this is illustrated in Fig. 1.1 where we have two regions of different temper-
ature, coupled by a diathermal wall. We can use law of maximum entropy

TA TB

Figure 1.1: Two regions of different temperature coupled by a
diathermal wall.

at equilibrium to calculate what happens to the system subsequently. The
entropy is given by

dS =
1
T
dU +

p

T
dV − µi

T
dNi + FjdXj , (1.1)

where temperature, T , pressure p, chemical potential, µi, and in general a
force Fj are intensive variables, and the internal energyU , volume V , particle
number Ni, and Xj are extensive variables. For the closed system illustrated
we must have dUA = −dUB , so the total change in entropy is

dST =
(

1
TA

− 1
TB

)
dUA. (1.2)

If the two temperatures in the different compartments are not equal then
the system is not in equilibrium, and entropy will be produced. In non-
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Example: Heat diffusion in an insulating solid

equilibrium thermodynamics the production of entropy is give by

dST

dt
= ∆

(
1
T

)

︸ ︷︷ ︸
Force

dUA

dt︸︷︷︸
Flux

= FiJi. (1.3)

Generically the entropy production is given by a sum of thermodynamic
forces and their associated fluxes.

To introduce the basic purpose of non-equilibrium thermodynamics, we
start with a simple example of heat diffusion in an insulating solid (heat
transport occurs by lattice vibration, not via net transport of particles) [1].
We extend the above equilibrium example example to a continuum system.
Consider an insulating solid connecting two heat reservoirs. In this case there
is a heat current flowing through the material between the two baths, jE . In

TA TB

L

l

Figure 1.2: An insulating solid divided up into small regions,
with heat reservoirs at either end.

linear irreversible thermodynamics the heat current is assumed to be propor-
tional to the thermodynamic force: here the temperature gradient

jE = LEE∇
(

1
T

)
. (1.4)

The transport coefficient relating the two must obey various symmetry con-
siderations (Curie principle and Onsager relations). From Fourier’s law we
know that jE = −κ∇T , so the transport coefficient is LEE = κT 2.

The conservation equations (mass, energy, momentum etc.) enable us to
write down the energy flow in the system. In this case we have

∂ε

∂t
+∇ · jE = 0. (1.5)
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Example: Heat diffusion in an insulating solid

Substituting in the constitutive equation for the relation of internal energy
and temperature (ε = CT ) produces

∂T

∂t
=
κ

C
∇2T. (1.6)

This equation can be solved in the steady state giving

T (x) = TA +
x

L
(TB − TA). (1.7)

We also have a balance equation for the entropy of the system. Although
this equation is redundant as far as solving the dynamics of the system, it is
important to ensure to identify the forces and fluxes, and to make sure that
the second law is not violated locally. Substituting the linear constitutive
equation into that for entropy production produces

dS

dt
= JF = LEE

(
∇ 1
T

)2

. (1.8)

Since the entropy production must be positive we have more symmetry prop-
erties that must be obeyed by the transport coefficients. The balance equation
for entropy is given by

∂s

∂t
+∇ · js = σ (1.9)

where σ denotes the entropy production. We shall see that the entropy flux
here is given by js = jq/T i.e. the heat flux divided by the temperature. It is
straightforward to show that the entropy production exactly cancels out with
the divergence of the entropy current, that is

− ∂

∂x

1
T

Q

A
= LEE

(
∇ 1
T

)2

, (1.10)

where A is the cross sectional area, and Q is the heat transported. In steady
state we can also find the total entropy produced as follows

dST

dt
=

∫ L

0
σ dx = −Q

A

∫ L

0

Q

A

1
T 2

dT

dx
dx =

Q

A

(
1
TA

− 1
TB

)
(1.11)

This result is consistant with the equilibrium result obtained earlier, and
shows that tne entropy change arises purely from heat transported along the
bar once steady state has been reached. In this simple example we have il-
lustrated the main points of non-equilibrium thermodynamics that will be
covered in this course.
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Equilibrium thermodynamics

1.2 Equilibrium thermodynamics

Macroscopic objects have a huge number of degrees of freedom – typically of
the order 1023. Their characterization can be vastly simplified by choosing the
relevant set of macroscopic variables that coarse grain the 1023 microscopic
degrees of freedom. Mechanics enables us to describe the behaviour of these
macroscopic variables, whereas thermodynamics treats the consequences of
ignoring the vast majority of the degrees of freedom, in particular the transfer
of energy to and from them.

The equilibrium state is characterised by the macroscopic variables such
as internal energy U , the volume V , and the mole numbers of the chemical
components, Ni. Thermodynamics can be framed in two equivalent ways:
the energy and the entropy representations [2]. Although the energy rep-
resentation is typically used as the basis for thermodynamic potentials, the
entropy representation lends itself to the calculation of fluctuations in the sys-
tem and to non-equilibrium where entropy production plays a central role.

1.2.1 Energy Representation

In this representation the fundamental equation is U = U(S, V, {Ni}, {Xj}),
where S is the entropy, V the volume, {Ni} denotes the mole numbers of the
chemical components, and {Xj} denotes the remaining extensive variables.
From this equation we can obtain all the information we require about the
system by taking derivatives:

dU =
(
∂U

∂S

)
dS +

(
∂U

∂V

)
dV +

(
∂U

∂Ni

)
dNi +

(
∂U

∂Xj

)
dXj (1.12)

dU = TdS − pdV + µidNi + PjdXj , (1.13)

where T is the temperature, p the pressure, µi the chemical potential of com-
ponent i, and Pj denotes the general intensive parameter derived from the
extensive variable Xj . The equations of state can then be calculated from the
fundamental equation

T = T (S, V, {Ni}, {Xj}) (1.14)
p = p(S, V, {N}, {Xj}) (1.15)
µi = µi(S, V, {Ni}, {Xj}) (1.16)
Pj = Pj(S, V, {N}, {Xj}). (1.17)

Since these are intensive quantities it is possible to eliminate the extensive
variables between these equations and obtain a relation between the inten-
sive parameters known as the Gibbs-Duhem relation

SdT − pdV + µidNi +XjdPj = 0. (1.18)
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Equilibrium thermodynamics

This relation can be used to calculate one of the equations of state if we know
all of the others.

To find the equilibrium state of the system we use the energy minimum
principle: The equilibrium state is such that the energy is minimized for a
given value of the total entropy. However, practically it is often more useful
to work in terms of intensive variables, and perform a Legendre transforma-
tion. For example the Helmholtz free energy is obtained by performing a
partial Legendre transformation that replaces entropy with temperature:

F [T ] = U − TS. (1.19)

The square bracket notation here is used to denote the new variable resulting
from the Legendre transformation. Similarly the enthalpy, H[p] is obtained
by performing a partial Legendre transformation that replaces volume by
pressure, and the Gibbs free energy, G[p, T ] is a partial Legendre transforma-
tion replacing entropy with temperature and volume with pressure. These
Legendre transformations of the energy are known as thermodynamic poten-
tials. They are useful because there is a minimum principle that can be used
to find the values of the internal parameters of a system in equilibrium. For
example the Helmholtz free energy is a minimum with respect to the inter-
nal parameters for a system in contact with a heat reservoir at a temperature
T = T r.

1.2.2 Entropy Representation

In the entropy representation S = S(U, V, {Ni}, {Xj}) is the fundamental
equation. The equations of state of the system can be calculated as discussed
in the previous section:

dS =
(
∂S

∂U

)
dU +

(
∂S

∂V

)
dV +

(
∂S

∂N

)
dN +

(
∂S

∂Xj

)
dXj (1.20)

dS =
1
T
dU +

p

T
dV − µi

T
dNi + FjdXj . (1.21)

The quantity Fj is now the generalised force associated with Xj , and is re-
lated to the generalised force Pj in the energy representation by

Fj =
∂S

∂Xj
= −∂U/∂Xj

∂U/∂S
= −Pj

T
. (1.22)

In the approach to equilibrium these generalised forces drive changes in the
extensive variables to equilibrate a system. For example consider a box di-
vided into two by a wall. The wall may be only permeable to heat (allowing
energy to flow), only move mechanically (allowing the volumes to change),
or in general allow any combination of extensive variables to change. The
total entropy of the system is ST = S(1) + S(2). Since the system is closed we
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have dX(1)
j = −dX(2)

j , e.g. if (1) has a volume increase then (2) must have an
equal and opposite volume decrease. Consequently using Eq. (1.21) we have

dST = ∆Fj dX
(1)
j (1.23)

where ∆Fj = F
(1)
j −F (2)

j i.e. any difference in the generalized force Fj drives
a flux of the corresponding extensive quantity Xj .

The entropy representation is also useful in non-equilibrium thermody-
namics because it enables calculation of the entropy production (the deriva-
tive of entropy with respect to time):

dS

dt
=

∂S

∂Xk

dXk

dt
. (1.24)

The first term in this equation is the analog of the force, and the second is
the current created by the force. We will see these flux force pairs arise in the
calculation of the general entropy balance equation.

Analogs of the thermodynamic potentials can be calculated, and are called
Massieu functions. These Legendre transformed quantities are maximised at
constant values of the transformed variables. They are useful in the calcula-
tion of the size of fluctuations which we will now discuss.

1.2.3 Fluctuations

The Boltzmann equation provides the route to the calculation of the proba-
bility that the system occupies a particular macroscopic state:

S = kB lnW ⇒W = eS/kB (1.25)

For a system in contact with a heat reservoir, the fluctuations in the internal
energy can be calculated from the canonical probability distribution

P (Û) =
e−βÛ

Z
= eβF−βÛ (1.26)

where Û denotes the instantaneous value of the quantity U . The variance of
the internal energy is then

〈(Û − U)2〉 =
∑

Û

(Û − U)2eβ(F−Û) (1.27)

Using ∂(βF )
∂β = U , it can be shown that this average is:

〈(Û − U)2〉 = −∂U
∂β

= kBT
2NcV (1.28)

6



Equilibrium thermodynamics

where cV is the specific heat capacity per molecule. Note that as is typical
here the relative amplitude 〈(Û − U)2〉1/2/U is proportional to N−1/2.

A similar analysis can be performed for a system in contact with reser-
voirs corresponding to the extensive parameters {Xi}. When the system is
in a microstate corresponding to extensive parameters {X̂i} the probability
distribution is

P ({X̂i}) = exp{−k−1
B S[{Fj}]− k−1

B FkX̂k}. (1.29)

If we again ask about the fluctuations of a pair of extensive variables Xj and
Xk, then we have to calculate

〈∆X̂j∆X̂k〉 =
∑

(X̂j −Xj)(X̂k −Xk)P ({X̂i}) (1.30)

It can be shown that the fluctuations here are given by

〈∆X̂j∆X̂k〉 = −kB
∂Xj

∂Fk
(1.31)

As an example consider a system where both the internal energy, and the
volume can fluctuate. In this case we have:

〈(δÛ)2〉 = −kB
∂U

∂(1/T )

∣∣∣∣
p/T

= kB

(
T 2Ncp − T 2pV α+ Tp2V κT

)
(1.32)

〈δÛδV̂ 〉 = −kB
∂V

∂(1/T )

∣∣∣∣
p/T

= kBT
2V α− kBTpV κT (1.33)

〈(δV̂ )2〉 = −kB
∂V

∂(p/T )

∣∣∣∣
1/T

= kBTV κT (1.34)

To make sure that the system is in local equilibrium it is necessary to calculate
the fluctuations in the temperature and the pressure. If we imagine trying
to measure the temperature of a system locally with a small thermometer
then it can be seen that the reading will fluctuate as the local value of the
energy fluctuates. We can therefore obtain estimates for the flucutations in
intensive parameters (such as the temperature) by using the fluctuations in
the extensive parameters given here.

δU

U
=

(
kB

NcV

)1/2

; ∆U = NcV ∆T ⇒ δT

T
=

(
kB

NcV

)1/2

(1.35)

δV

V
=

(
kBTκT

V

)1/2

;
∆V
V

= κT ∆p ⇒ δp

p
=

(
kBT

p2V κT

)1/2

(1.36)

Estimating the size of these fluctuations is crucial in determining the region
of validity of non-equilibrium thermodynamics.
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1.3 Aims of non-equilibrium thermodynamics

The purpose of non-equilibrium thermodynamics (NEQTD) is to answer ques-
tions about systems out of equilibrium. Here we consider linear irreversible
thermodynamics that is based on the balance equations (conservation of mass,
momentum etc.) and the linear relation between forces and fluxes from sym-
metry and phenomenological considerations, following [3]. NEQTD pro-
vides a prescription for determining the dynamics of a system that is out
of equilibrium, with a few assumptions. Essentially the recipe is as follows:

1. Choose the relevant slow variables of the system, typically conserved
quantities and broken symmetry variables.

2. Write down the balance equations for the conserved variables.

3. Write down the (redundant) entropy balance equation and identify the
entropy production (sources of dissipation).

4. Identify the force (F) - current (j) pairs in the entropy production.

5. Write down the phenomenological constitutive equations, ensuring they
obey the relevant symmetries e.g. Onsager relations.

6. Use the constitutive equations to substitute for the unknown fluxes in
the equations of motion.

In looking for the steady state of the system there are some analogies with
equilibrium thermodynamics. In equilibrium thermodynamics the maximum
entropy principle can be used to find equilibrium (this is a postulate in some
formulations of thermodynamics). In NEQTD the steady state can be charac-
terized, in some systems, by a minimum in the dissipation, or entropy produc-
tion of the system.

An alternative framework for non-equilibrium thermodynamics has also
been constructed: the “GENERIC” formalism by Öttinger and co-workers
[4]. Additional structural variables are introduced here that characterize the
state of the system, leading to more general dynamics, however due to the
generality of linear irreversible thermodynamics it must be contained within
the GENERIC formalism in the correct limits.

1.3.1 Identifying hydrodynamic variables

1. Due to the assumption of local equilibrium the variables of equilibrium
thermodynamics U, S, V,N, ... and T, p, µ, ... vary slowly (both spatially
and in time).

2. Conserved variables, e.g. mass, particle number, etc. are slow because
it takes a finite time to transport them.
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3. Systems with broken symmetries have extra variables, such as the lat-
tice distortion in crystals or the nematic director in liquid crystals, which
exhibit slow dynamics (Goldstone’s theorem→ broken symmetry vari-
ables are slow in the limit of large wavelength).

1.3.2 Equations of motion

The equation of motion for the system is typically one of force balance be-
tween reversible (reactive) and irreversible (dissipative) forces.

Frev + Firrev = 0

Dissipation occurs because of the coarse-grained nature of the description of
the system. We transfer energy from the macroscopic variables with which
we describe the system, into some of the microscopic variables that were
thrown away in the coarse graining process. Time reversal symmetry, which
is the basis of the Onsager relations, can be used to classify the terms in the
equations of motion and identify them as either reversible or irreversible and
gain insight into the equation of motion.

1.3.3 Reversible

If under time reversal the relation between the two terms retains the same
sign, then the dynamics they describe is reactive for example propagating
waves ∂2

t θ = ∇2θ.

1.3.4 Irreversible

If under time reversal the relation between the two terms changes sign then
the dynamics described are dissipative (producing entropy). For example

m
∂2x

∂t2
= −b∂x

∂t
+ fext (1.37)

Note that quantum mechanically it can be difficult to insert a dissipative term
because the Schrödinger equation is reversible.

An example of the typical sort of equation we wish to derive is the Navier-
Stokes equation describing fluid flow

ρ(∂t + v · ∇)v︸ ︷︷ ︸
reversible

= η∇2v︸ ︷︷ ︸
dissipative

− ∇p︸︷︷︸
reversible

(1.38)

1.4 Local equilibrium

In non-equilibrium thermodynamics we are interested in the hydrodynamic
regime, that is where the system is locally in equilibrium. The theory is only
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valid if we are at long wavelength, and low frequency. We now discuss in
detail what limits are placed on the length scales and field strengths in this
regime.

As we have seen fluctuations in an extensive quantity of a thermody-
namic system are typically ∼ N−1/2, where N is the number of particles in
the system. Thus small changes of system parameters of order N−1/2 do
not disturb the equilibrium of the system and are reversible. Equilibrium
thermodynamics discusses infinitely large systems and so fluctuations are
infinitesimally small. Consequently reversible processes proceed infinitely
slowly.

1.4.1 Spatial resolution

In a non-equilibrium system we wish to describe spatially inhomogeneous
states, so must divide up the system into small cells of side λ. If the jth cell
has Nj particles then we must ensure that this number is large enough to
perform statistical mechanics. However we must also ensure that it is small
enough so that we can capture the variation of the fields (T (r, t), ρ(r, t), ...)
smoothly. The cell size is bounded by these two constraints

(Nj À 1) < λ < Smooth field variation (1.39)

1.4.2 Time Evolution

In equilibrium thermodynamics a process that passes through a dense suc-
cession of equilibrium states forms a curve in the space spanned by the ther-
modynamic variables. This series of equilibrium states can be used to ap-
proximate a real process (providing that the entropy is monotonically non-
decreasing function). At each step it must be ensured that the system has
reached its equilibrium state i.e. the process must be slow relative to an in-
ternal relaxation time τrel. In non-equilibrium systems there is a character-
istic time scale for the evolution of the whole system, τev, and a timescale
for the relaxation of the system back to equilibrium. So for a time scale ∆t
equilibrium will be maintained in a particular cell provided

τrel ¿ ∆t¿ τev (1.40)

i.e. there must be a separation of time scales.

1.4.3 Field strengths

It must also be ensured that the variation in the fields over each cell is not
so large that it destroys the equilibrium ofthe system (i.e. consistent with the
fluctuation in the system). This provides a constraint on the maximum field
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gradients that may be applied ∇P
λ|∇P |
P

<
δP

P
¿ 1, (1.41)

where δP is the size of the fluctuations of the thermodynamic property P in
the cell of side λ. This criterion together with those outlined above should
ensure that the system is in local equilibrium.

1.4.4 Examples

Gas

For gas at STP we can estimate the bounds on the various time scales in the
system to ensure local equilibrium. For a typical gas the relaxation time is
∼ ν−1

coll, where νcoll is the collision frequency of the gas particles.

τrel ∼ 10−10s (1.42)

The length scale of the cells must be of order the mean free path

λ ∼ 10−7m (1.43)

The number of particles in each cell is then Nj ∼ (10−7)3 × 1025 = 104 which
is enough for good statistics. The maximum temperature gradients in the
system must be less than:

δT

T
∼

(
2

3Nj

)1/2

∼ 5× 10−3 → ∇T ∼ 107K m−1. (1.44)

Liquid

For a liquid where there is no obvious length scale (interparticle spacing and
correlation length are of the same order, and far too small) we can use fluc-
tuations in the particle number in the cell to calculate the appropriate length
scale. For water at STP then κt ∼ 0.5 GPa−1

δn

n
=

(
kBTκT

V

)1/2

∼ 10−2 ⇒ V 1/3 ∼ 2 nm. (1.45)

Correspondingly Nj ∼ 300. Using CV ∼ 75 J mol−1 K−1 the maximum tem-
perature gradient must be less than

δT

T
∼ 10−5 ⇒ ∇T ∼ 105K m−1 (1.46)

Thus the approximation of local equilibrium can be maintained quite accu-
rately for both liquids and gases in very large temperature gradients. How-
ever, it should be noted that near phase transitions, the box size λ can diverge
as κT diverges. The maximum temperature gradient then falls to zero be-
cuase fluctuations in extensive variables grow too large. It is then impossible
to maintain the local equilibrium and the theory breaks down.
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Chapter 2

Balance Equations

Having discussed the main approximations in the theory we now start by for-
mulating the appropriate balance equations in the system following [3], [5]
and [6]. The aim is to formulate the two fundamental laws of thermodynam-
ics (conservation of energy, and entropy production) for a non-equilibrium
system containing a mixture of different fluids. However, to formulate these
laws it will be necessary to first discuss the local conservation of momen-
tum and mass which form the basis for the other laws (and arise from the
microscopic laws of mechanics governing particles in the gas).

2.1 First Law

An extensive variable can be written in terms of its density as follows

F (t) =
∫

V
ρ(r, t)f(r, t)dV (2.1)

where ρ is the mass density, and f is the amount of F per unit mass (mass is
always conserved here, whereas volume may not be e.g. expansion of a gas).
The general form of a balance equation is then

dF

dt
=

∫

V
σFdV −

∫
JF · dS (2.2)

where the first term is the production of F and the second term is the flux
of F out of the system. Using the divergence theorem this relation can be
written as a relation between local quantities

∂t(ρf) +∇ · JF = σF . (2.3)

We can now apply this balance equation to mass, momentum, energy and
entropy.
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Mass conservation

Total mass is conserved and so has no source term. Consequently for a one
component system

∂tρ+∇ · (ρv) = 0 (2.4)

where the mass flux is Jρ = ρv. The Eulerian formulation here is used where
we take the reference frame to be the lab coordinate system. The convected
derivative may be defined here as follows

Dt = ∂t + v · ∇. (2.5)

This derivative can be thought of as giving the rate of change in the center
of mass frame. An example of this is an incompressible fluid, ∂tρ+ v · ∇ρ =
−ρ∇ · v. Since the rate of change of the density in the center of mass frame
is zero we have Dtρ = 0, hence ∇ · v = 0. Using this notation, the following
useful relation can be derived

ρDtf = ∂t(ρf) +∇ · (fρv) (2.6)

where we have used conservation of mass (Eq. (2.4)). We can then write the
balance equation as

ρDtf = ∂t(ρf) +∇ · (fρv) = σF −∇ · (jF − ρfv) (2.7)

Thus for an observer in the center of mass frame the current seen is reduced
by and amount ρfv.

For a multicomponent system composed of different species of density
ρα, the center of mass is define by

v =
1
ρ

∑
α

ραvα where ρ =
∑
α

ρα (2.8)

We then have mass conservation for each species: Dtρα + ρα∇ · vα = 0. In
principle we could insert chemical processes that transform one species into
another. Such processes would lead to a source term in the above equation
from chemical processes that create or destroy the appropriate species. We
will ignore such processes here for clarity. The diffusion current is defined as

jdiff
α = ρα(vα − v). (2.9)

This is one of several unknown currents that will be introduced during the
formulation of NEQTD. We will then have to find out what these currents
are by formulating a constitutive equation. The mass conservation for each
species may then be written as

Dtρα + ρα(∇ · vα) + ρα∇ · v − ρα∇ · v = 0 (2.10)
Dtρα + ρα∇ · v +∇ · jdiff

α = 0 (2.11)
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First Law

Momentum balance

Applying Newton’s 2nd law to the system in the center of mass frame gives

ρDtv = −∇ · P +
∑
α

ραFα (2.12)

where Fα is the sum of the body forces per unit mass on species α, and P is
the local pressure tensor (or negative stress tensor) arising from short range
interactions. Deriving this expression from an integral formulation, with the
pressure tensor acting on the surfaces, then using the divergence theorem
gives a clear idea of where the divergence of the pressure comes from. It
can be assumed that the pressure tensor is symmetric provided that the con-
stituent particles carry no angular momentum.

The momentum balance can also be written in the following form

∂t(ρv) = −∇ · (P + ρvv) +
∑
α

ραFα. (2.13)

So the current is made up of a convected part of momentum density ρvv (not
present in the center of mass frame in Eq. (2.12) )plus a term from short range
interactions, P with a source

∑
k ρkFk due to external and long range forces.

Energy balance

To work out the balance equation we start with the kinetic energy

∂t
1
2ρv

2 = ρ∂t
1
2v

2 + 1
2v

2∂tρ (2.14)
= ρ∂t

1
2v

2 − 1
2v

2∇ · ρv (2.15)
= ρDt

1
2v

2 − 1
2∇ · (ρvv2) (2.16)

= ρv ·Dtv − 1
2∇ · (ρvv2) (2.17)

= −v · (∇ · P ) +
∑
α

ραv · Fα − 1
2∇ · (ρvv2) (2.18)

If we reorganise this into the usual form of a balance equation the we obtain
the following

∂t
1
2ρv

2 +∇ ·
[

1
2ρv

2v + P · v
]

=
∑

α ραv · Fα + P : ∇v (2.19)

The second term on the left is the flux of kinetic energy, made up of a con-
vected term, and a conduction term. The two terms on the right are sources
of kinetic energy, the first is the work done by external forces and the second
is the power from compression.

We need a similar equation for the potential energy. Assuming the body
forces can be derived from a time independent potentialψα then Fα = −∇ψα.
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First Law

The total potential energy can be defined by

ρψ =
∑
α

ραψα (2.20)

The balance equation for the local potential can then be derived

∂t(ρψ) =
∑
α

ψα∂tρα = −
∑
α

ψα∇ · (ραvα) = −
∑
α

ψα∇ · (jdiff
α + ραv) (2.21)

∂t(ρψ) +∇ ·
[∑

α

ψα(jdiff
α + ραv)

]
=

∑
α

(jdiff
α + ραv)∇ψα (2.22)

∂t(ρψ) +∇ ·
[
ρψv +

∑
α

ψαjdiff
α

]
= −

∑
α

[
jdiff
α · Fα + ραv · Fα

]
(2.23)

Here we can see a convected part of the potential energy in the current, and
transport due to diffusion. The source has contributions from the conversion
of potential energy into kinetic energy, and conversion to internal energy by
diffusion. The sum of kinetic and potential energy is not conserved, we must
include the internal energy, uwhich is increased by compressing the material
for example. From a microscopic point of view the internal energy u repre-
sents the energy of thermal agitation, and short range molecular interactions.
The total energy can now be formed as follows

ρe = 1
2ρv

2 + ρψ + ρu. (2.24)

Energy conservation can be expressed as

∂t(ρe) +∇ · je = 0 (2.25)

An internal energy balance equation has the following form

∂t(ρu) +∇ · ju = σu (2.26)

σu = −P : ∇v +
∑
α

jdiff
α · Fα (2.27)

ju = jq + ρuv (2.28)

where the heat current is associated with the internal energy, and σu is the
source term. The source term can be derived by forcing conservation of en-
ergy as outline above. By using the following equations we can rearrange the
internal energy balance

ρDtq +∇ · jq = 0 (2.29)
Dtρ

−1 = ρ−1∇ · v (2.30)

The internal energy equation can then be put in the form

Dtu = Dtq − pDtρ
−1 − ρ−1Π : ∇v + ρ−1

∑
α

jdiff
α · Fα (2.31)
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where Π = P − pδ (the traceless part of the pressure tensor). This is the
expression we have been aiming for; an expression of the first law of thermo-
dynamics.

2.2 Entropy Law

Main equilibrium properties of the entropy: additive, positive in the absence
of external sources and dSe = dQ/T for a system in contact with a heat reser-
voir. Here we will split up the entropy into two sources

dS = dSe + dSi (2.32)

where dSe is the external source of entropy from the surroundings of the
system (can be positive, negative or zero) and dSi is the internal source of
entropy which must be nonnegative. The balance equation for the entropy is
then

∂t(ρs) +∇ · js = σs, (2.33)

where we must ensure that σs ≥ 0. We now require the following expression
from equilibrium thermodynamics

Tds = du+ pdv −
∑
α

µαdcα (2.34)

where cα = ρα/ρ,and µα denotes the chemical potential. From this expression
we obtain

TDts = Dtu+ pDtρ
−1 −

∑
α

µαDtcα (2.35)

by assuming local equilibrium in the centre of mass frame (that is the system
relaxes locally much faster than the global evolution of the system, and the
field gradients are not too large etc.) and substituted ρ−1 for the specific
volume. Now we assemble the necessary pieces as follows:

Dtρ
−1 = − 1

ρ2
Dtρ =

1
ρ
∇ · v (2.36)

ρDtu = ∂t(ρu) +∇ · (ρuv) (2.37)
ρDts = ∂t(ρs) +∇ · (ρsv) (2.38)
ρDtcα = ∂tρα +∇ · (ρα(v − vα + vα) = −∇ · jdiff

α . (2.39)

Using these equations we can obtain the following expression for the entropy

ρDts = − 1
T
∇ · jq − 1

T
Π : ∇v +

1
T

∑
α

jdiff
α · Fα +

1
T

∑
α

µα∇ · jdiff
α (2.40)
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From this we can identify the entropy current, and the entropy source by
some rather careful rearrangements.

js = ρsv +
jq
T
−

∑
α

µα
jdiff
α

T
(2.41)

σs = jq · ∇ 1
T

+
∑
α

jdiff
α ·

[
1
T

Fα −∇µα

T

]
+

1
T

Π : ∇v (2.42)

Note whilst it seems like a slightly arbitrary separation, there are a few prop-
erties that we must satisfy. The entropy production σs must be zero in equi-
librium, there must be no divergence of a vector field in σs that could lead to
violation of σs ≥ 0. Thus we see contributions to the entropy current from
a transport term ρsv, from the heat flow and from the diffusion of matter.
Also note that only the viscous part (Π) of the pressure tensor contributes
to the entropy production (the isotropic part is cancelled out in Eq. (2.35) by
an equivalent term in the internal energy). The contributions to the entropy
production is from the sum over source of dissipation(converting macroscop-
ically measurable quantities into microscopic motions that are coarse grained
out). Each term is made up of force flux pairs:

σs =
∑

i

JiFi (2.43)

where the forces are typically identified by F = ∂S
∂Xi

where Xi is an extensive
variable, and the current is J = ∂Xi

∂t . Since F and J have different parity
under type reversal the entropy production is odd on reversing the time.
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Chapter 3

Constitutive equations

In the previous chapter we saw that the entropy production was constructed
from pairs of forces, such as ∇T and currents such as jq. If we want to solve
for the temperature distribution in the system then we must know how the
current depends on ∇T . In this chapter we look at some constraints on the
phenomenological relation between the currents and the forces.

3.1 Phenomenological constitutive equations

The simplest constitutive equation that can be constructed is known as the
Onsager expansion, and is a linear relation between the currents, and the ther-
modynamic forces that drive them:

Ji =
∑

j

LijFj . (3.1)

We have met some of these forces and fluxes:

Ji Fi

jq ∇ (
1
T

)

jdiff
α

1
T Fα −∇µα

T

Π 1
T (∇v)(s)tr=0

There are several examples of phenomenological laws that have turned
out to be linear. Examples of this include Fourier’s law of heat conduction
(jq = −λ∇T ), Fick’s law of diffusion (jdiff = −D∇c), Newton’s law of friction
(σ = η

[∇v + (∇v)T
]
) and Ohm’s law (J = σE). There are other examples
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Curie Principle

in which the current is dependent on several forces such as thermoelectric
effects. It should also be noted that the currents only depend on the instan-
taneous values of the intensive variables, i.e. the system has no memory.
Consequently these types of system are referred to as purely resistive linear
systems. The Onsager coefficients are local and are linear functions of the
intensive parameters, Fj .

We can put some constraints on the Onsager coefficients by using the non-
negative definite nature of the entropy production:

σs =
∑

i

FiJi =
∑

ij

FiLijFj ≥ 0 (3.2)

Consequently we must have that Lii ≥ 0 (each diagonal element must be
nonnegative). The off diagonal elements must also satisfy LiiLkk ≥ 1

4(Lik +
Lki)2. We should also note at this stage that the antisymmetric part of the
matrix of Onsager coefficients does not contribute to the entropy production
because the Onsager coefficients are contracted with a symmetric matrix.

3.2 Curie Principle

The number of couplings between the different types of fluxes can be reduced
slightly by use of the Curie principle. Roughly speaking the Curie principle
states that in an isotropic system the currents and thermodynamic forces of different
tensorial character do not couple (isotropic system being invariant under rota-
tions). To show that this is true we first need to carefully identify the tensorial
objects of different symmetry within a rank two tensor:

T = 1
3δtrT + T (a)+

◦
T (s) (3.3)

where T (a) is the antisymmetric part of the tensor and
◦
T (s) is the traceless

symmetric part of the tensor. The double contraction of two tensors can be
written as

T : R = 1
3(trT )(trR) + T (a) : R(a)+

◦
T (s) :

◦
R (s). (3.4)

Thus in the entropy production we expect four types of term

σs = JsF s + Jv · Fv + Ja · Fa + J t : F t, (3.5)

where s indicates a scalar, v indicates a vector, a indicates an axial, or pseudo
vector, and t indicates a traceless symmetric tensor. Using the Onsager ex-
pansion we can replace the currents here with a linear combination of the
forces, remembering to put in coupling to the forces of different character

Js = LssF s + Lsv · Fv + Lsa · Fa + Lst : F t (3.6)
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Onsager relations

Jv = LvsF s + Lvv · Fv + Lva · Fa + Lvt : F t (3.7)

Ja = LasF s + Lav · Fv + Laa · Fa + Lat : F t (3.8)

J t = LtsF s + Ltv · Fv + Lta · Fa + Ltt : F t. (3.9)

Under an orthogonal transformationA a tensorial quantity T must transform
as follows

T ′ij... = (detA)εAipAjq . . . Tpq... (3.10)

where ε = 0, 1 for polar and pseudo (axial) vectors respectively. Now if the
system has a symmetry property under which the Onsager coefficients are
invariant, then L = L′ under the transformation. For example if A is an
inversion then we have (schematically)

(detA)εAnL = L⇒ (−1)ε+nL = L (3.11)

Thus L must be zero if ε + n is odd, which eliminates sv and vs, vt and tv,
and av and va couplings. If we consider an arbitrary rotation R then we can
deduce

R · Las = Las and R · Lsa = Lsa. (3.12)

Consequently there are no as and sa couplings. Now since the couplings
aa, vv, st, ts must be proportional to the identity (only isotropic rank two ten-
sor) we can deduce that the last two are zero since they must have zero trace
(since they couple a traceless tensor to a scalar, and a scalar to a traceless
tensor). Since F t is symmetric then only the symmetric part of Lst and Lts

is relevant. However, these third rank tensors must be isotropic, and so pro-
portional to εijk (the Levi-Civita symbol). Since this is antisymmetric, then
both the at and ta coefficients must be zero. Thus we have eliminated all
the couplings between currents and forces of different tensorial character by
using the transformational properties of an isotropic system. For systems
with lower symmetry that the isotropic system, a similar analysis can be per-
formed.

3.3 Onsager relations

As a consequence of microscopic reversibility we can also derive another
relation between the coefficients of the Onsager expansion, known as the
Onsager relations. We first consider a set of extensive variables, Ai, with
equilibrium values of Aeq

i . Their deviation from equilibrium is given by
αi = Ai − Aeq

i . If we are close to equilibrium then the entropy can be ex-
panded in terms of α

S(α) = S(0) +
∂S

∂αi
αi + 1

2
∂2S

∂αi∂αj
αiαj + . . . (3.13)
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Onsager relations

where the second term is zero since we are expanding about the equilibrium
state. The change in the entropy can then be written

∆S = S(α)− S(0) = −1
2Sijαiαj . (3.14)

The driving forces can be identified as

Fi =
∂S

∂αi
= −Sijαj (3.15)

and the fluctuations in α calculated from the usual probability density

W (α)dα =
e∆S/kBdα∫
e∆S/kBdα′

. (3.16)

From this it can be shown that 〈αiαj〉av = kBS
−1
ij , and consequently that

〈αiFj〉av = −kBδij . These averages can be calculated from an ensemble of
systems, or via the ergodic hypothesis as a long-time average over a single
system. This second method is useful in non-equilibrium thermodynamics
as a way to introduce the variable time. Time reversal symmetry (arising
because of the symmetry of Hamilton’s equations under time reversal) for
every microscopic motion means that the average of αi must be the same for
equal positive and negative times from an arbitrary origin

〈αi(t+ τ)〉α(t)
av = 〈αi(t− τ)〉α(t)

av . (3.17)

From this relation we can obtain

〈αj(t)αi(t+ τ)〉 = 〈αj(t)αi(t− τ)〉 (3.18)

which are both independent of t in equilibrium. We now apply this to non-
equilibrium thermodynamics, via the assumption of local equilibrium (through
the usual assumption of time scales etc.). To evaluate the required we require
the thermodynamic currents

α̇i = LijFj + κi(t) (3.19)

where κi(t) is a random driving force with zero averages. This equaiton can
be solved via an integrating factor

α(t) = e−tL·Sα(0) + e−tL·S
∫ t

0
et
′L·Sκ(t′)dt′. (3.20)

This solution can be used to calculate the averages and correlations

〈α(t+ τ)− α(t)〉α(t)
av =

[
e−τL·S − 1

] 〈α(t)〉α(t)
av ≈ −τL · S〈α(t)〉α(t)

av = τL〈F 〉av

〈αl(t) [αk(t+ τ)− αk(t)]〉α(t)
av = τLkj〈αlFj〉 = kBτLkl

〈αk(t) [αl(t+ τ)− αl(t)]〉α(t)
av = kBτLlk
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and the Onsager relations follow here we have that Lij = Lji. Note that it
was assumed here that α was even under time reversal. If we have variables
β that are odd under time reversal then we have

〈βi(t)βj(t+ τ)〉 = 〈βi(t)βj(t− τ)〉 (3.21)
〈αi(t)βj(t+ τ)〉 = −〈αi(t)βj(t− τ)〉. (3.22)

The entropy is even under time reversal, so only contains αα and ββ terms.
The derivation outlined above can then be followed through, resulting in

αα : Lij(B, ω) = Lji(−B,−ω) (3.23)
αβ : Lij(B, ω) = −Lji(−B,−ω) (3.24)
ββ : Lij(B, ω) = Lji(−B,−ω). (3.25)

3.4 Examples

3.4.1 Thermoelectricity

As a first example of the Onsager relations we examine a thermocouple, con-
sisting of two metal wires connected together. Experimentally it is known
that a temperature difference between the two junctions produces both a heat
and an electrical current. The latter establishes a potential difference across
the system. We can write down the relation between the forces and the cur-
rents as follows

je = LeeFe + LeqFq (3.26)
jq = LqeFe + LqqFq (3.27)

where the thermodynamic forces are given by Fq = ∇ 1
T and Fe = − 1

T∇µ,
where the electrostatic forces have been included in the chemical potential
and assumed to be the only spatially varying part of the potential. Substitut-
ing these into the constitutive equations produces

je = Lee

(
− 1
T
∇µ

)
+ Leq∇ 1

T
(3.28)

jq = Lqe

(
− 1
T
∇µ

)
+ Lqq∇ 1

T
(3.29)

The Onsager relations imply that Leq = Lqe. For a system with conductivity
σ we can identify Lee by setting the temperature gradients to zero, then σ =
− (

eLee
T

)
. The thermal conductivity (jq = −λ∇T ) can be calculated by setting

the electrical current to zero. This produces

T 2λ =
LqqLee − LqeLeq

Lee
(3.30)
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We need one more relation to fix all of the Onsager coefficients, and another
to test the theory. The first we might use is the Seebeck effect, in which an
EMF is measured (with a fixed temperature difference) under zero current
flow. If we set je = 0 then we find that

V =
1
e

(µr − µl) =
∫ 2

1

(
LA

eq

eTLA
ee

− LB
eq

eTLB
ee

)
dT (3.31)

so that the thermoelectric power (the change in voltage per unit change in
temperature difference) is

εAB =
∂V

∂T
= εB − εA where εA =

−LA
eq

eTLA
ee

. (3.32)

The thermoelectric power enables the determination of all the Onsager co-
efficients. The Peltier effect (evolution of heat due to electric current flow
across a junction) can be used as a further test of the theory. The Peltier coef-
ficient is defined as the heat required when unit electric current flows across
the junction.

πAB =
(jB

q − jA
q )

je
= T (εB − εA) (3.33)

since the system is isothermal, and the flux of particles is continuous. Note
there is a further effect of the evolution of heat as a result of current traversing
a temperature gradient (the Thomson effect).

3.4.2 Single component fluid

If we consider a single component fluid, then the Onsager relations are not
required as there is no coupling between the vector heat and the tensor pres-
sure. The constitutive equations are then

jq = −λ∇T (3.34)
Π0 = −ζ∇ · v (3.35)

Π(s)
tr=0 = −η(∇v + (∇v)T ) (3.36)

where we have decomposed the viscous tensor as follows

P = pδ + Π = pδ + Π0δ + Π(s)
tr=0 + Π(a) (3.37)

These constitutive equations can be substituted into the equations of motion
for the system

∂tρ = −∇ · ρv (3.38)
ρDtv = −∇p+ η∇2v + (1

3η + ζ)∇∇ · v (3.39)

ρDtu = λ∇2T − p∇ · v + 2η(
◦
∇v (s)) : (

◦
∇v (s)) + ζ(∇ · v)2 (3.40)
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The first equation gives conservation of mass, the second is the equation of
motion, and the third is conservation of energy. We also require equations of
state to determine the system

p = p(ρ, T ) (3.41)
u = u(ρ, T ) (3.42)

for a medium with zero velocity these equations reduce to the heat conduc-
tion equation.

3.4.3 Multicomponent fluid

Returning to the multicomponent fluid, for which we can now write down
the general Onsager expansion, ignoring body forces:

jq = Lqq∇ 1
T
− Lqα

∑
α

∇µα

T
(3.43)

jdiff
α = −Lαα∇µα

T
−

∑
β

α 6=β

Lαβ∇
µβ

T
+ Lαq∇ 1

T
(3.44)

for the vectorial fluxes (which can only couple to each other). We also have
the relations Lαq = Lqα and Lαβ = Lβα. For the viscous pressure, we have
the same as the single component fluid, as it is a tensor so cannot couple to
the other components. These constitutive equations can again be substituted
into the equations of motion to remove the undetermined currents.

3.4.4 Heat diffusion

We will use the final example to illustrate the principle of minimum entropy
in a one-component isotropic system (this follows from a single component
system with zero velocity). The local entropy production is then:

σs = jq · ∇ 1
T

(3.45)

The phenomenological constitutive equation is then

jq = Lqq∇ 1
T

(3.46)

Note that the heat conductivity coefficient is given by Lqq = λT 2. The energy
equation is then given by

ρ∂tu = ρcv∂tT = −∇ · jq (3.47)
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3.5 Minimum Entropy production

The total entropy production is given by

P =
∫
σdV =

∫
Lqq

(
∇ 1
T

)2

dV (3.48)

If we solve δP = 0 for the minimum entropy production, then the Euler
equations produce

∇2 1
T

= 0 (3.49)

which is the steady state of the system. The steady state of the system in can
thus be obtained directly from the entropy production. It can be shown that
these minimum dissipation states are stable with respect to perturbations.
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Chapter 4

Liquid Crystals

Liquid crystals are classified as complex fluids because, like polymer melts
and wormlike micelles, they have extra internal degrees of freedom that have
to be taken into account when calculating their hydrodynamics. In the ne-
matic phase they are anisotropic liquids, so their constitutive equations do
not obey the Curie principle discussed in the previous chapter. In this sec-
tion we formulate the hydrodynamics for nematic liquid crystals in the non-
inertial limit, and examine the Onsager relations for the new degrees of free-
dom.

4.1 Order parameter and elasticity

Liquid crystals are composed of rod like molecules that disordered (isotropic)
in the high temperature phase, but on cooling form a nematic phase in which
the rods start to align with a particular direction n. After this transition the
rotational symmetry of the original isotropic system is broken. An order pa-
rameter associated with this transition can be calculated from the distribution
of the directions in which the rods point ν. Due to the symmetry of the rods
the first moment of the rod orientation is zero (e.g. see [7]). The second mo-
ment must be used to obtain an orientational order parameter. It is typically
forced to be traceless

Q = 〈νν − 1
3δ〉 (4.1)

In its principal frame this tensor can be written in terms of two parameters as
it is traceless. One of the parameters quantifies the degree of biaxial ordering
in the system so will be ignored here, and the other defines the degree of
uniaxial ordering. The order parameter for the system can thus be written in
terms of the degree of uniaxial order S, and the direction of the order n

Q = S
(
nn− 1

3δ
)
. (4.2)
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Below the nematic-isotropic transition temperature degree of uniaxial order-
ing is regarded as having a fixed value as it is a fast variable and quickly re-
turnes to its minimum free energy value. The direction of the ordering n has
a very slow relaxation time for long wavelength perturbations so is treated
in hydrodynamic formulations.

The homogeneous part of the free energy can be written down on phe-
nomenological grounds by ensuring that the symmetries of the order param-
eter are respected. The result is

fL = 1
2a(T − T ∗)QijQij + 1

3bQijQjkQki + 1
4C(QijQji)2 + . . . (4.3)

Spatial distortions of the director field have an associated energetic cost
calculated in the continuum theory from the Frank elastic energy [8]

2Wd = K1(∇·n)2 +K2(n ·∇×n)2 +K3(n×∇×n)2 = K∇n : (∇n)T . (4.4)

These elastic terms known as splay, twist and bend respectively and they
are responsible for local torques on the director due to spatial gradients in
the director field. A simplifying approximation often made is known as the
one constant approximation where it is assumed that K1 = K2 = K3 =
K, resulting in the final equality above. The elastic free energy can also be
written in terms of Q

fF = L1Qij,kQij,k + L2Qij,jQik,k. (4.5)

4.2 Equations of Motion

There are several different formulations of the equations of motion for liquid
crystals. Leslie-Ericksen theory for example describes the hydrodynamics
of uniaxial nematics by considering the orientation of the nematogens only
[9–11]. However, the equations of motion can be framed more generally in
terms of the order parameter Q. The effect of shear flow on the phase transi-

tion from isotropic to nematic phase can then be investigated. We follow the
approach of Olmsted here in discussing the equations of motion of the order
parameter [12].

In equilibrium thermodynamics the thermodynamic potentials can be used
to specify the state of the system when we know intensive variables e.g.
when it is in contact with an external heat reservoir. The principle of maxi-
mum entropy can be converted to one of minimum free energy in this case.
Similarly in the non-equilibrium case we can relate the entropy production
to the free energy production.

dST = d[Ss + Sr] = dSs +
1
Tr
dUr (4.6)

= − 1
Tr

[dUs − TrdSs] = − 1
T r
dF (4.7)
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where we have made use of the fact that the system is closed, so dUs = −dUr.
The free energy production will have parts from both the energy and entropy
flux, and the entropy production

Ḟ = Ė − T Ṡ = −
∫

JE · dS + T

∫
JS · dS− T

∫
σsdV (4.8)

The free energy can also be written in terms of the Landau and Frank contri-
butions that were discussed above

F =
∫

Ω

(
1
2ρv

2 + fL(Q) + fF (∇Q)
)
dV. (4.9)

Typically when we look at the phenomenological free energy like this we
minimise it with respect to the order parameter Q (with constraints such as

Q remain traceless, and symmetric). This can be done using the functional

derivative:
H = −δF

δQ
= −∂fL

∂Q
+∇ · ∂fF

∂∇Q, (4.10)

where H is the molecular field and describes the change in the free energy
for small deviations in the order parameter. In equilibrium we have H = 0.

In the non-equilibrium case we imagine deforming the system r → r′ =
r + u. The relation between the two coordinate systems is then given by

∇′ = ∂r
∂r′

· ∇ = (δ +∇u)−1 · ∇ ≈ (δ −∇u) · ∇. (4.11)

When we distort the system the points r and r′ are identified so they must
have the same order parameterQ(r) = Q′(r′) (see figure 4.2). The free energy

of the deformed system is then given by

F ′ =
∫

Ω

(
fL(Q′(r′)) + fF (∇′Q′(r′))

)
dV ′ (4.12)

=
∫

Ω

(
fL(Q(r)) + fF ((δ −∇u) · ∇Q(r))

)
det(δ +∇u)dV (4.13)

Now if we vary Q to minimise the free energy then the following results

δF =
∫
dV


∂fL

∂Q
: δQ+

∂fF

∂∇Q
...
(
∇δQ−∇u · ∇Q

)
 (4.14)

=
∫
dV





∂fL

∂Q
−∇ · ∂fF

∂∇Q


 : δQ− ∂fF

∂∇Q
...(∇u · ∇Q)


 (4.15)

=
∫
dV

(
−H: δQ+ (σd − Pδ):∇u

)
. (4.16)
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Q( r)
r Q( r)

Q

r’r

’( r )’tδ

Figure 4.1: The distortion of the liquid crystal order parame-
ter after deforming the space by r → r′ = r + u(r).

The distortion stress and the pressure described above are both reversible
stresses: σr = σd − Pδ. The irreversible stresses arising from dissipative

effects also contribute to the total stress: σ = σr + σi. We can use the total
stress to substitute into the free energy for the reversible stress. If we then
take a total time derivative, then the following equation is produced:

dF

dt
=

∫
dV

(
−H: Q̇+ (σ − σi):∇v

)
. (4.17)

If we integrate the term σ:∇v by parts then we obtain −∇ · σ · v = −ρdv
dt · v,

where use has been made of the equation of motion ρDtv = ∇ · σ. This term
cancels out with the kinetic eneergy term in the free energy, so does not need
to be considered. Consequently the entropy production term can be written
as follows:

Tσs = σi:∇v +H: Q̇. (4.18)

In this expression it is helpful to split up the stress into symmetric and anti-
symmetric parts: σi = σi(a) + σi(s). The antisymmetric part can be expressed

in terms of an axial vector σ(a)
αβ = 1

2εαβγIγ . Now the bulk viscous torque is
not caused by elastic terms, but due to force balance they must be equal to
the elastic terms, just as kx = ηẋ for an overdamped spring. Consequently
we substitute for the viscous terms using the elastic terms:

Iλ = Hαβ(ελαµQµβ + ελβµQαµ) (4.19)

Using this substitution we obtain the following expression for the entropy
production

Tσs = σi(s):∇v +H:K (4.20)

where K = Q̇ − ((∇v)(a) · Q − Q · (∇v)(a)). We are now in a position to

construct the linear constitutive equations, and apply the Onsager equations.
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Shear flow and phase transitions

Here the fluxes are σi and K. The forces are the molecular field H and the
velocity gradient∇v. The linear relation between the fields can be expressed
as follows:

σ
i(s)
αβ = Γ1

αβλρ(∇v)(s)λρ +M1
αβλρH

(s)
λρ (4.21)

Kαβ = Γ2
αβλρ(∇v)(s)λρ +M2

αβλρH
(s)
λρ . (4.22)

As we have seen in the previous section the Onsager relations arising from
time reversal properties demand that M1

αβλρ = −M2
λραβ and Γi

αβλρ = Γi
λραβ .

The symmetry and tracelessness of the forces and fluxes also demand var-
ious properties of these coupling matrices: M i

ααλρ = Γi
ααλρ = 0, M i

αβλρ =
M i

βαλρ = M i
αβρλ, and Γi

αβγρ = Γi
βαγρ = Γi

αβργ . These symmetry relations
vastly reduce the number of phenomenological parameters necessary to de-
scribe the system. Only 3 viscosity coefficients are required.

4.3 Shear flow and phase transitions

The system of equations described in the previous section can be solved nu-
merically [12]. For low shear rates the phase transition remains discontinu-
ous, but as we increase the shear rate above a critical value the phase transi-
tion becomes continuous.
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