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Statistical models of elasticity in main chain and
smectic liquid crystal elastomers

James Adams, Fitzwilliam College

Liquid crystal systems typically consist of rod like molecules that sponta-
neously align along a chosen direction (the director) below a certain temper-
ature or above a certain concentration. When these molecules are connected
to polymers, the alignment of the molecules can alter the conformation of
the polymer backbone. This effect can be seen on a macroscopic level by
cross-linking the polymer chains together to form a liquid crystal elastomer
(LCE). In this thesis the elastic properties of main chain and smectic liquid
crystal elastomers are modelled, and a mechanism of piezoelectricity in LCEs
is explored. These three projects are summarised below.

In the strongly nematic state main chain liquid crystalline polymers have
hairpin defects along their length. When these chains are cross-linked together
they show unusual soft elastic properties experimentally. The elastic proper-
ties of a main chain elastomer are modelled here by calculating the stiffness of
chains with hairpin defects and of those without. The dramatically different
spring constants motivate a non-affine model for deformation of the resulting
elastomer. The chains with hairpin defects are less stiff than those without
and so take up more of the macroscopic strain. As the elastomer is stretched
the macroscopic strain becomes more concentrated in the elastically weaker
hairpinned chains, and so the rubber shows a plateau in its stress-strain curve.

A mechanism of developing a polarisation in chiral main chain LCE is
analysed. In this mechanism the dipoles of the chiral monomers can be aligned
by a shear deformation. It is shown that the polarisation of a pure LCE is zero
in equilibrium due to rotation of the director. The response of the director
must be altered in a specific way in order to realise a non-zero result. Three
methods of circumventing this result are explored: oscillating shear, pinning
the director with smectic layers, and using a mixture of chiral and non-chiral
chains. Each of these methods is shown to produce a polarisation which is
much larger per unit stress than that of quartz crystal.

A fully non-linear model of elasticity in smectic A elastomers is developed
from a phantom network model. The rigid constraints required by the layered
smectic system are analysed from a geometric perspective. The results of
this model are then compared to a wide range of experimental observations:
extreme Poisson ratios, in-plane modulus, modulus before and after threshold
when the elastomer is stretched along the layer normal. This model is then
used to look for soft modes in biaxial smectic A elastomers and smectic C
elastomers. A general procedure for the calculation of soft modes is developed
and specific examples of soft modes given.





Preface

In this thesis the elastic properties of two different types of liquid crystal
elastomer are modelled: main chain liquid crystal elastomers in part I and
smectic liquid crystal elastomers in part II. The first chapter of part I, chapter
2, addresses the questions; What is the distribution of end-to-end spans in
main chains? How does this affect the way a main chain elastomer deforms?
What are the resulting stress-strain characteristics of a main chain elastomer?
At the time of writing there are only a few experimental groups synthesising
main chain elastomers and investigating their elastic properties. The results
produced are not in agreement, having different stress-strain characteristics,
and some theoretical guidance is required. In chapter 3 an unusual mechanism
of polarisation in amorphous materials is explored. This mechanism raises
the question; how does the director of a liquid crystal elastomer respond to
a deformation? For the polarisation mechanism to work, the response of the
director must be altered in a specific way. Three different mechanisms are
discussed for this alteration.

In part II smectic elastomers become the focus of the discussion. In chap-
ter 4 a model motivated by the Gaussian phantom network is constructed
to describe the elastic properties of smectic elastomers. However, because
smectic elastomers are layered systems with the layer spacing being extremely
stiff, there are rigid constraints that must be obeyed as the smectic elastomer
deforms. The predictions of this model are explored and compared to the
available experimental data. Chapter 5 explores two different smectic phases
and in particular the soft elastic response of smectic elastomers, that is the
modes of deformation that cost no energy in smectic elastomers.

Parts of this dissertation have been published as follows:

Chapter 2 J. M. Adams and M. Warner, Hairpin rubber elasticity, Euro.
Phys. J. E, 16 p. 97 (2005).

Chapter 3 J. M. Adams, On the polarization of chiral main-chain liquid-
crystalline elastomers, Euro. Phys. J. E, 14 p. 277 (2004).
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Chapter 4 J. M. Adams and M. Warner, Elasticity of smectic-A elastomers,
Phys. Rev. E, 71 021708 (2005).

Chapter 5 J. M. Adams and M. Warner, Phys. Rev. E, Soft elasticity in
smectic elastomers, Accepted (2005).
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Chapter One

Introduction

T
he subject of this thesis is the elastic properties of two different types
of polymer networks: main chain nematic elastomers and smectic elas-

tomers. Both of these systems are anisotropic, and the molecular theories
used to describe them here are in the same vein as previous phantom chain
models of rubber elasticity.

1.1 Classical rubber elasticity

The classical theory of rubber elasticity, based on a phantom network of Gaus-
sian chains, is surprisingly successful. Modelling the cross-link points of rub-
bery materials as deforming affinely with the external strain (R → λ ·R) one

obtains the free energy density of a Gaussian phantom network as

f = 1
2µTr

(

λT · λ
)

,

where µ is the shear modulus of the network [1]. For a rubber network the
constraint of incompressibility (det(λ) = 1) is usually imposed. Despite the

successes of the phantom network model it neglects, amongst other things,
entanglements of the network strands and non-Gaussian nature of the chains,
for example their finite extensibility. One way to correct for these failings
is the Mooney-Rivlin approach. The free energy density should be invariant
under rotation of the target and reference states, so can only be a function of
the rotational invariants of the Cauchy-Green deformation tensor C = λT · λ
[2]. These invariants can be added together to phenomenologically fit the
deviations from the phantom network model. However, this approach does
not provide any insight to the microscopic details of the network. Other
attempts have also been made to include entanglements (e.g. [3]), but such
corrections will be neglected here.

1



2 CHAPTER 1. INTRODUCTION

1.2 Neo-classical rubber elasticity

In 1969 de Gennes proposed that if an elastomer was cross-linked in the pres-
ence of a liquid crystalline solvent then the resulting polymer network should
show anisotropic properties as a consequence [4]. For example, if the network
was cross-linked in a nematic solvent then the polymer chains should elongate
along the director. Polymer liquid crystals (PLCs) offer a more direct way of
combining the anisotropic properties of liquid crystals with a polymer back-
bone. The liquid crystalline molecules can be coupled in several different ways
to the polymer as illustrated in Fig. 1.1. If these PLCs are cross-linked into

c)b)a)

n

Figure 1.1: Three examples of polymer liquid crystals: a) main
chain , b) prolate back bone side chain and c) oblate back bone
side chain [5].

a network, then the coupling between the mesogenic units and the polymer
backbone will result in an elastomer that exhibits the anisotropic properties
referred to by de Gennes. An important advance was the synthesis of poly-
mer liquid crystal networks using polysiloxane backbones [6]. This enabled
exploration of a several parameters in the construction of the network, for
example the spacer length and the influence of the mesogenic units. Initially
the samples made were not globally aligned: they were polydomains. Two ap-
proaches have been successfully employed to align the separate domains, and
hence prepare monodomain elastomers. The first is to pre-align the polymers
in a magnetic field and then cross-link them [7]. On heating these samples to
the isotropic state and returning them to the nematic state, they show com-
plete recovery of the globally aligned nematic phase. The second method is to
carry out a light cross-linking stage of an unaligned elastomer, and then load
the sample before carrying out a second cross-linking stage [8]. The elastic
properties of the resulting monodomains can then be investigated without the
complication of the polydomain structure. The anisotropic properties of the
nematic monodomain described above can be modelled using the phantom



1.3. APPLICATIONS FOR LIQUID CRYSTAL ELASTOMERS 3

network model for anisotropic chains (see e.g. [9]). The resulting free energy
density is

f = 1
2µTr

(

ℓ0 · λT · ℓ−1 · λ
)

,

where ℓ0 and ℓ are the matrices of effective step lengths before and after the

deformation by λ, respectively. This theory has proved remarkably successful

in describing, amongst other things, the spontaneous elongation of a nematic
elastomer on cooling into the nematic state. Some main chain polymers (see
Fig. 1.1 a)) show particularly large spontaneous elongation due to the strong
nematic state that they form. The unusual elastic properties of main chain
liquid crystalline elastomers will be discussed in part I.

Cholesteric liquid crystals have a helical structure in their director fields.
A cholesteric liquid crystal elastomer also has a twisted director field that is
cross-linked into the elastomer. However, by the use of a cholesteric solvent
and a nematic elastomer, a twist can be cross-linked into the elastomer and
can be adjusted by the concentration of the cholesteric solvent present during
cross-linking. The more concentrated the cholesteric solvent, the more tightly
twisted is the director field on cross-linking. This director field is imprinted
on the network by the cross-linking process and remains after the solvent
has been removed. These chirally imprinted elastomers show a fascinating
twisted-untwisted transition as the solvent concentration is varied [10, 11].
Cholesteric elastomers show a remarkable ability to separate chiral isomers by
preferentially absorbing one handedness over the other [12, 13].

The smectic phase was also discussed by de Gennes and was expected
to have extremely anisotropic mechanical properties. This is because the
layered structure of smectic liquid crystals was expected to force the polymer
chains to concentrate in between layers, and as a result the elastomer structure
is strongly anisotropic. The elastic properties of smectic elastomers will be
discussed in part II.

An interesting attempt to connect together the classical theory of rubber
elasticity and the neo-classical theory of rubber elasticity has been made by
Xing et al. [14]. They follow the replica-based approach of Deam and Edwards
[15] and construct a Landau theory of the vulcanization transition. Their
work also promises to shed light on properties of polydomain liquid crystal
elastomers [16–19].

1.3 Applications for liquid crystal elastomers

Liquid crystal elastomers are an exciting system academically because of their
many unusual elastic and optical properties for example [20]. Their practical
usefulness is currently limited because of the small quantities available. How-
ever, there are many interesting prospective applications including the sifting
of chiral molecules mentioned above. One application that has attracted par-
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ticular interest is that of an actuator or artificial muscle. Typical stress and
strain values for skeletal muscles are of the order of 350kPa and 25%. By
adjusting the cross-linking density and the polymer backbone it is possible to
make a liquid crystal elastomer with similar characteristics [21, 22]. However
the limiting factor is the response to a stimulus as the thermal conductivity
of an elastomer is low. One possible solution to this with a sufficiently fast
response is to incorporate dye molecules into the elastomer that undergo a
transition from trans to cis on illumination.

The applications of liquid crystal elastomers is expected to grow when
their piezoelectric and ferroelectric properties have been fully developed.



Part I

Main chain liquid crystal
elastomers
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Chapter Two

The elasticity of hairpin chain
elastomers

I
n this chapter a simple model of a main chain liquid crystalline elastomer
is presented. This model is based on the calculation of the partition func-

tion for a 1-D model of polymer chain with hairpin defects along its length.
Calculation of the chain’s spring constants motivates a non-affine method for
stretching the polymer network. The nominal stress-strain curves for this
model are then calculated and discussed.

2.1 Introduction

2.1.1 Semi-flexible polymers

Mesogenic polymers can be divided into two classes: main chain and side
chain polymers. The focus here is main chain polymers. These polymers
exhibit hairpin defects where the chain switches from following the nematic
field direction on average to following the nematic field in the opposite sense.
The transition is achieved by bending the polymer (penalised by the bend-
ing energy if done rapidly) and having sections of the chain misaligned with
the nematic field (penalised by the nematic field energy if done too slowly).
Hairpin defects are responsible for the transition from a rod like conforma-
tion of main chain polymers in strong nematic field, to a coil in weak nematic
field [23]. The statics and dynamics of these defects has been calculated in
[24]. At low temperatures it is found that exponentially rapid growth of chain
dimension occurs as a function of inverse temperature. This is confirmed by
small angle neutron scattering measurements of the chain dimension as a func-
tion of temperature [25]. A rigid cylinder model of the chain extent fitted to
small angle neutron scattering is also consistent with the hairpin bend picture.

7



8 CHAPTER 2. HAIRPIN CHAIN ELASTOMERS

A nematic main chain polyester with 28 monomers exhibits on average 2.45
hairpins on average according to the rigid cylinder model [26]. The worm-like
chain model of semi-flexible chains in ensembles of fixed end-to-end length
have attracted interest recently because it is now technologically possible to
measure force extension curves of individual strands of DNA for example [27].
Consequently, the details of this model has been explored in 1, 2 and 3 dimen-
sions using the Fokker-Planck equation [28]. The 1-D model of a semi-flexible
chain is particularly relevant to the main chain elastomers considered here.

2.1.2 Main chain elastomers

Main chain liquid crystalline polymers can be cross-linked together to form an
elastomer. One of the remarkable properties of this elastomer is the softness
that it exhibits. When an aligned monodomain is stretched perpendicular to
the director, the elastomer deforms at no energy cost because the increase in
macroscopic length demanded by the stretching is provided by rotation of the
director, rather than by stretching the polymer. This is called soft elasticity.

Polydomain materials also show plateaux in their stress strain curves, due
to the rotation of the domains in the material aligning their local directors,
which is accompanied by a soft elastic response [17]. The alignment of adjacent
domains can be studied experimentally by measuring the order parameter of
the sample as a function of the deformation. When the order parameter
becomes saturated, the stress begins to rise again as the deformation applied
increases, i.e. the material becomes much harder. The length of the plateau is
controlled by the anisotropy of the polymers that make up the elastomer (

√
r).

The shape anisotropy is governed by the coupling between the mesogenic
units and the polymer backbone. Consequently, main chain polymers have a
much higher anisotropy than side chain polymers, so exhibit more exaggerated
effects in the main chain samples.

Experimentally, main chain elastomers have proved much more difficult
to fabricate and work with than side chain elastomers. Recent stress-strain
experiments on main chain polydomain samples have shown that the plateau
in the stress-strain curves persists after the order parameter has saturated.
Wermter et al. [29, 30] carried out stress-strain experiments on three differ-
ent polydomain samples. The samples were made by using long main chain
polymers (with up to ∼ 60 rod like monomers per chain) to cross-link side
chain polymers together. However, the main chain cross-linkers dominate the
rubber elasticity of the samples. The samples were made with three different
molar percentages of main chain cross-linker: 1.9%, 4.0% and 9.1% denoted
by samples 5a, 5b and 5c. The first two samples do not show a compelling ex-
tended plateau. In the third sample with the highest proportion of main chain
cross-linkers, the plateau is clearly extended. The results of the stress-strain
experiment and corresponding order parameter measurements are shown in
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Fig. 2.1. This behaviour was only seen in the polydomain samples of Wermter
et al.; no monodomain samples were tested.
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Figure 2.1: The stress-strain curve and the order parameter
for sample 5c of Wermter et al. [30]. The order parameter
saturates at around λ = 3 whilst the stress-strain curve still
exhibits a plateau up to Λ = 4.5.

Similar experiments, but on monodomains, were performed by Clarke et

al. [31]. They investigated three different types of cross-linker; short siloxane
(SiF), short aliphatic (SiH) and long main-chain (SiMC). Mechanical experi-
ments show that when the elastomer is stretched perpendicular to the director,
there is a plateau in the stress-strain curves [31] (Fig. 2.2). The length of this
plateau is in agreement with the predictions of soft elasticity [32]. However
when stretched along the director there is no weak response as in [30], the
modulus is enormously greater, see Fig. 2.2. A possible explanation of the
lack of an extended plateau during stretch along n is that during the aligning
of the monodomain, thermal expansion occurs leaving no scope for further
chain extension, and very few hairpins.

In the following sections the stretching of a monodomain elastomer com-
posed of main chains parallel to the director is modelled. The hairpin defects
on the main chain polymers form the basis of this model. First the properties
of a single hairpin chain in the direction parallel and perpendicular to the
nematic field are considered. The probability distribution of the span length
of a hairpin chain parallel to the nematic field is, surprisingly, very close to
a Gaussian distribution for very small numbers of hairpin defects. Then the
stretching mechanism of an elastomer composed of hairpin chains is motivated
by the properties of the individual chains. The elastic response of this model,
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a) b)

Figure 2.2: Stress-strain curve of a monodomain main chain
elastomer, (a) stretched parallel to the director and (b)
stretched perpendicular to the director [31].

using both the stretching mechanism and the model of main chain polymers,
is then calculated.

2.2 Model of hairpin chains

The energy of a single semi-flexible polymer chain in a strong nematic envi-
ronment can be written down in terms of the bend modulus, B, which is a
measure of local flexibility of the chain (length · energy) and J which measures
the nematic coupling between the local chain alignment and the alignment of
the surroundings of the chain (length−1 · energy). The energy of the chain in
terms of the local tangent at arc length s, u(s) is then

E =

∫ L

0
ds12

[

B

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

− Ju2z

]

(2.1)

Two different mechanisms by which the chain can gain configurational entropy
are considered: via positioning of hairpin defects and via fluctuations of the
alignment of the monomers about the nematic director.

2.2.1 Hairpin defects

An illustration of a chain with two hairpins is shown in Fig. 2.3. At zero
temperature the thermal fluctuations of the polymer chain can be ignored
and the shape of single hairpin defect on an infinite chain calculated (§2.A).
The energy associated with a hairpin defect and the associated length scale
are given by

uh = 2
√
BJ ; lh =

√

(B/J) (2.2)

de Gennes was the first to calculate the energy of the hairpin defect in the
continuum limit of the liquid crystalline polymer [33]. Several hairpin defects
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n

Figure 2.3: An illustration of two hairpin defects.

on a polymer chain can be treated as thermal excitations, each of energy uh
with the corresponding Boltzmann weight. The hairpins are also exponentially
localized to the length lh so do not take up much of the arc length of the chain.
They are also treated as non-interacting as explained below. In the model
considered here it does not matter whether a discrete or continuum picture of
a nematic polymer is used (this is a question of whether the hairpin scale is
larger or smaller than the persistence length [34]), we simply use the hairpin
energy, uh.

2.2.2 Undulations

u

n

Figure 2.4: A polymer chain in a strong nematic field makes
small excursions away from the nematic director, n.

An undulating section of a polymer chain is illustrated in Fig. 2.4. It is
assumed that the chain is so stiff and in such a strong nematic field, or under
such a large force, that each monomer can only undergo small deviations from
the nematic direction. It can be shown that the free energy of the undulations
on the chain is roughly proportional to the length of the chain (§2.B). Conse-
quently, if a hairpin is put into an undulating chain then the free energies of
the undulating sections just add. The undulations contribute to the end-to-
end distance of the chain in the direction perpendicular to the nematic field.
The end-to-end length projected down onto a plane perpendicular to the ne-
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matic director, n is Gaussian distributed and has a mean square displacement
given by (§2.B)

〈

R2
⊥
〉

=
LkBT

J
. (2.3)

Note that the mean square extent does not depend explicitly on the bend
constant. This is because although an increase in the bend constant results in
an increase in the persistence length of each unit, this dependence is exactly
cancelled out by the fact that the segments will have a smaller average tilt
angle to the nematic field, and hence a smaller transverse component, as a
result of the increase cost of bending the polymer.

2.2.3 Partition function for 1-D model

Parallel to the nematic field, the end-to-end distance of the hairpin chain is
principally governed by hairpins. The end-to-end distribution can be found by
calculating the partition function of the hairpin chain. First imagine putting
n hairpin defects onto the polymer chain as shown in Fig. 2.5, using the fol-
lowing procedure: Begin creating a polymer chain in a highly ordered nematic
environment, starting with the chain pointing in the up direction. Lay down
the polymer for a distance s1 and then insert the first hairpin by changing to
the down direction. Then lay down a distance s2 − s1 and put in the second
hairpin by changing direction. This process is continued until all n hairpins
are been put in. Then put in the remaining piece of polymer so that the total
arc length is L. Repeat the process for all possible positions of the defects
along the chain provided: s1 < s2 < s3 < ... < sn < L.

All defects are identical and so do pass through each other (to prevent
over-counting). This procedure can be expressed in an integral which gives
the number of configurations with a fixed end-to-end separation of R. Each
configuration that has the required end-to-end separation is counted as 1 by
using the delta function to impose the constraint

R = s1 − (s2 − s1) . . . + (−1)n(L− sn). (2.4)

Integrating this constraint over all hairpin positions, and remembering that
the chain can start in either the up or the down directions results in the
following

Ω
(n)
± =

∫ L

0

dsn
l

∫ sn

0

dsn−1

l
. . .

∫ s2

0

ds1
l

× δ

(

1

2l
[s1 − (s2 − s1) . . . + (−1)n(L− sn)∓R]

)

, (2.5)

where Ω
(n)
± denotes the number of configurations starting from the up (+) and

down (−) directions, L is the total arc length of the polymer and l is some
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a) b)

z

R

Figure 2.5: Two illustrations showing how the counting of the
number of configurations of hairpins is carried out. a) starts
by moving up and b) by moving down. R is the z-component
of the end-to-end separation.

characteristic length scale of the polymer (l = B/kBT ). The problem can be
rendered dimensionless by using the following definitions

N =
L

l
; yn =

sn
l

; z =
R

l
. (2.6)

The integral of Eq. (2.5) can be evaluated for small values of n (up to about
3) using the appropriate hyper-volume. For example when n = 2

Ω
(2)
+ =

∫ N

0
dy2

∫ y2

0
δ

(

y1 − y2 +
N −R

2

)

dy1 (2.7)

=

∫ N

N−R
2

dy2 =
N +R

2
. (2.8)

Similarly starting in the (−) direction

Ω
(2)
− =

N −R

2
. (2.9)

Summing the two contributions to the configurations results in

Ω(2) = N. (2.10)

This method of evaluation of the number of configurations becomes increas-
ingly difficult for higher n. An alternative method of evaluating the number



14 CHAPTER 2. HAIRPIN CHAIN ELASTOMERS

of configurations is to express the delta function in terms of its Fourier repre-
sentation

Ω
(n)
± = 2

∫ ∞

−∞

dk

2π

∫ N

0
dyn

∫ yn

0
dyn−1 . . .

∫ y2

0
dy1

× e−ik[y1−(y2−y1)...+(−1)n(N−yn)∓z]. (2.11)

These integrals can be decoupled using the following property of the Laplace
transform of a convolution [35]

L−1 {f1(q)f2(q)} =

∫ τ

0
F1(τ − σ)F2(σ)dσ, (2.12)

where fi(q) is the Laplace transform of the function Fi(y), denoted by fi(q) =
L{Fi(y)}. The Laplace transforms required are

L
{

eiky
}

= f+(q) =
1

q − ik
(2.13)

L
{

e−iky
}

= f−(q) =
1

q + ik
. (2.14)

The result of using Eq. (2.12) is

Ω
(n)
± = 2

∫ ∞

−∞

dk

2π
e±ikzL−1 {W (q)} , (2.15)

where the variable conjugate to q in the Laplace transform is N and W is
given by

W (q) =

{

f
n
2
+ (q)f

n
2
+1

− (q) even n

f
n+1
2

+ (q)f
n+1
2

− (q) odd n.
(2.16)

The inverse Laplace transform can be carried out by using the Bromwich
inversion formula

F (N) =
1

2πi

∫ λ+i∞

λ−i∞
eNqf(q). (2.17)

Here the integration limits are chosen so that all the poles reside to the left of
the contour of integration. The inverse Laplace transform are thus given by
the residues of the function

W (q)eNq =











(

1
q−ik

)
n
2
(

1
q+ik

)
n
2
+1
eNq even n

(

1
q−ik

)
n+1
2
(

1
q+ik

)
n+1
2
eNq odd n

(2.18)

The most direct way to calculate the number of configurations is to evaluate
the residues of this expression. An alternative method by induction is given
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in §2.C. The general formula for calculating the residue at an mth order pole
at ξ = ξo is

Res F (ξ)|ξ=ξo =
1

(m− 1)!

(

d

dξ

)m−1

ξ=ξo

(F (ξ)(ξ − ξo)
m) . (2.19)

Once the inverse Laplace transform has been calculated, the Fourier transform
of the resulting expression with respect to k is required to find the partition
function. This requires evaluation of integrals of the type

I± = P
∫ ∞

−∞

1

kn
e±ikz. (2.20)

P denotes the Cauchy principal value of the integral — the pole on the contour
of integration is excluded from the value of the integral. The integral can be
computed using by Jordan’s lemma, giving the result

I± =
±i

2(n− 1)!
(±iz)n−1. (2.21)

The residues and the Fourier transforms are now calculated starting with an
even number of hairpins. The Leibniz formula for differentiating a product is
useful in calculating the residues

dn

dxn
A(x)B(x) =

n
∑

s=0

nCs
ds

dxs
A(x)

d(n−s)

dx(n−s)
B(x). (2.22)

The residue of the pole at q = ik is found to be

Resq=ik(Θ(q)eNq) =
1

(n2 − 1)!

n
2
−1
∑

s=0

n
2
−1Cse

ikNN
n
2
−s−1

(n

2
+ 1
)

. . .
(n

2
+ s
)

× (−1)s

(2ik)
n
2
+s+1

=
1

(n2 − 1)!(n2 )!

n
2
−1
∑

s=0

n
2
−1Cse

ikNN
n
2
−s−1

(n

2
+ s
)

!

× (−1)s

(2ik)
n
2
+s+1

.

Similarly for the pole at q = −ik

Resq=−ik(Θ(q)eNq) =
1
(

n
2

)

!

n
2
∑

s=0

n
2Cse

−ikNN
n
2
−s
(n

2

)

. . .
(n

2
+ s− 1

)

× (−1)s

(−2ik)
n
2
+s



16 CHAPTER 2. HAIRPIN CHAIN ELASTOMERS

=
1

(n2 − 1)!(n2 )!

n
2
∑

s=0

n
2Cse

−ikNN
n
2
−s−1

(n

2
+ s− 1

)

!

× (−1)s

(−2ik)
n
2
+s
.

The number of configurations can be found by summing the residues at the two
poles and calculating the integral transforms Eq. (2.15) and then summing the
results for starting in the up and down directions. First the integral transforms
of the residue at q = ik is calculated, followed by the corresponding result at
q = −ik. Denoting these two results as ω+ and ω− we have

ω+ =
2

(

n
2 − 1

)

!
(

n
2

)

!

n
2
−1
∑

s=0

n
2
−1Cs

(n

2
+ s
)

!
(−1)s

(2i)
n
2
+s+1

×

×
{

i

(n2 + s)!

(

(i(1 +
z

N
))

n
2
+s + (i(1− z

N
))

n
2
+s
)

}

N
n
2
−1

=
1

2
(

n
2 − 1

)

!
(

n
2

)

!

×
(

(

1 + z
N

2

)
n
2
(

1− z
N

2

)
n
2
−1

+

(

1− z
N

2

)
n
2
(

1 + z
N

2

)
n
2
−1
)

Nn−1,

and at the other pole

ω− =
2

(

n
2 − 1

)

!
(

n
2

)

!

n
2
∑

s=0

n
2Cs

(n

2
+ s− 1

)

!
(−1)s

(−2i)
n
2
+s

×

×
{ −i
2(n2 + s− 1)!

(

(−i(1− z

N
))

n
2
+s−1 + (−i(1 + z

N
))

n
2
+s−1

)

}

Nn−1

=
1

2
(

n
2 − 1

)

!
(

n
2

)

!

×
(

(

1 + z
N

2

)
n
2
(

1− z
N

2

)
n
2
−1

+

(

1− z
N

2

)
n
2
(

1 + z
N

2

)
n
2
−1
)

Nn−1.

Summing these two results gives the number of configurations for even n

Ω(n) = ω− + ω+ (2.23)

=
2N

n(n− 2)!!2
(

N2 − z2
)

n
2
−1
. (2.24)

A similar analysis can be done for the odd case. The result for the number of
configurations of the defects on the chain is

Ω(n) =

{

2
n(n−2)!!2

N(N2 − z2)
n−2
2 even n

2
(n−1)!!2

(N2 − z2)
n−1
2 odd n.

(2.25)
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The number of hairpins on the chain is governed by the temperature of the
system and the energy of a hairpin defect. The partition function can be
calculated by summing all the configurations multiplied by their associated
Boltzmann factors. This is most naturally done by splitting up the sums for
even and odd numbers of defects.

Zhp = Zeven + Zodd (2.26)

Zeven =
∑

even n

2Nn−1

n(n− 2)!!2

(

1−
(

z
N

)2
)

n−2
2
e−nβuh (2.27)

Zodd =
∑

odd n

2Nn−1

(n− 1)!!2

(

1−
(

z
N

)2
)

n−1
2
e−nβuh . (2.28)

Fortunately these series can be summed up to infinity resulting in modified
Bessel functions. The power series expansion of modified Bessel function is
given by

Iν(z) = e−
π
2
νiJν(iz) =

∞
∑

k=0

(z/2)ν+2k

(k!)(ν + k)!
(2.29)

In summing the odd series, the following result is useful

(n− 1)!! = 2.4. . . . (n− 1) (2.30)

= 2
n−1
2

(

n− 1

2

)

! (2.31)

Substituting n = 2p + 1 reduces the odd part of the partition function to

Zodd = 2
∞
∑

p=0

(

1−
(

z
N

)2
)p
N2p

(p!)222p
e−(2p+1)βuh (2.32)

= 2e−βuhI0

(

e−βuhN

√

1−
(

z
N

)2
)

. (2.33)

Similarly for the even series, the result

(n− 2)!! = 2
n−2
2

(

n− 2

2

)

! (2.34)

enables the series to be summed. Substituting n = 2p gives

Zeven = 2
∞
∑

p=1

N2p−1

2(p − 1)!p!

(

1−
(

z
N

)2

4

)p−1

e−2pβuh . (2.35)

Substituting p′ = p− 1 enables this expression to be rewritten as

Zeven = 2

∞
∑

p′=0

N2p′+1

2(p′ + 1)!p′!

(

1−
(

z
N

)2

4

)p′

e−2(p′+1)βuh (2.36)



18 CHAPTER 2. HAIRPIN CHAIN ELASTOMERS

= 2

√

4

1−
(

z
N

)2

∞
∑

p′=0

N2p′+1e−2(p′+1)βuh

2(p′ + 1)!p′!

(

1−
(

z
N

)2

4

)p′+1/2

(2.37)

= 2
e−βuh

√

1−
(

z
N

)2
I1

(

e−βuhN

√

1−
(

z
N

)2
)

. (2.38)

Combining both of these results together with the delta functions that repre-
sent the chain in its fully stretched out configuration gives the full partition
for the 1-D hairpin chains

Zhp(z) =
2

N
(fN)

[

I0

(

fN

√

1−
(

z
N

)2
)

+
1

√

1−
(

z
N

)2
I1

(

fN

√

1−
(

z
N

)2
)





+ δ(z −N) + δ(z +N) (2.39)

where f is the Boltzmann factor of a single hairpin f = e−βuh , and the par-
tition function has been expressed in terms of the natural variable fN . The
partition function is of the form

Zhp(z) =
1

N
h(fN, z/N). (2.40)

The combination fN can be interpreted as approximately the average number
of hairpins on a hairpinned chain with z = 0 (§2.D). Alternatively specification
of f gives the ratio of uh to kBT as βuh = − ln f . The expression for Zhp(z →
N) is given by

Zhp(z → N) → 2f + f2N (2.41)

This is simply the sum of one and two hairpin contributions. The other hairpin
formulae depend on the end-to-end distance whereas the one and two hairpin
results have no dependence on the end-to-end distance. When approximating
this partition function, it is useful to know the value of Zhp(0)

Zhp(0) = 2f I0(fN) + 2f I1(fN) (2.42)

Fig. 2.6 compares the end-to-end distributions for different temperatures ex-
pressed in the fN parameter. A comparison between the partition function
summed over all hairpins and the partition function summed over only a finite
number of hairpins is shown in Fig. 2.7. It shows that the partition function
converges very quickly with the number of hairpin defects included in the sum
for small fN . At larger fN many terms are required for any sort of conver-
gence. To develop a better intuition for this partition function and calculate
some of its limits it is useful to develop an approximation.
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Figure 2.6: A comparison between the partition function, Zhp,
for different values of fN (all normalised to Zhp(z = 0) = 1).
The curves shown are for fN = 1, 2, 5, 10, 50. The distribution
is flatter for low fN as it consists of mostly the one and two
hairpin contributions. It should be remembered that there are
also two delta function spikes at z = ±N .

Asymptotic Approximation

It is difficult to integrate the partition function in Eq. (2.39). It is much easier
to work with an asymptotic approximation to this expression. The modified
Bessel function has the asymptotic approximation [36]

Iν(x) ∼
1√
2πx

ex. (2.43)

There is no ν dependence in the leading behaviour. However, the coefficients
of the next terms in the asymptotic expansion do depend on ν. This approx-
imation will become more accurate when z ≪ N and fN ≫ 1. Substituting
Eq. (2.43) into Eq. (2.39) we obtain

Zhp(z) ∼
2

N

√

2fN

π
efNe−

fN

2 ( z
N )

2

. (2.44)

Thus for fN → ∞ and z → 0 the partition function is asymptotic to a
Gaussian distribution, as expected from the central limit theorem [37]. The
scaling of

〈

z2
〉

with N is dependent on temperature

〈

z2
〉

=
N

f
≡ N2

fN
(2.45)
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Figure 2.7: A comparison between the partition function
summed to infinity and just the first few terms. This is at
a temperature satisfying fN = 8. The distribution is trun-
cated at z = ±N , the stretched out length of the chain.

where the latter expression emphasises that the chains become rod like 〈z2〉 ∼
N2 unless the number of hairpins, fN , is large. At high temperature fN ∼ N
and on average there is a hairpin on every persistence length. In this tempera-
ture region the end-to-end span shows Gaussian scaling. At low temperatures
where there are very few hairpins per chain fN ∼ 1 and the scaling is rod like.
Fitting a Gaussian to the partition function provides a better estimate than
working with the asymptotic approximation. The amplitude of the Gaussian
is easily fixed by forcing agreement when z = 0

ZGA(z) = Zhp(0)e
−αN2( z

N
)2 , (2.46)

where Zhp(0) = 2f I0(fN) + 2f I1(fN). To fit the curvature we need the
following property of modified Bessel functions

dIn(x)

dx
= 1

2 (In−1(x) + In+1(x)) . (2.47)

For I0(x) we recall that: In(x) = I−n(x). Fitting the curvature gives α =

−Z′′(0)
2Z(0) . The following expression for α is obtained

N2α =
1

(fN)I0(fN) + (fN)I1(fN)

(

(fN)2

4
I0(fN)

+

(

(fN)2

2
− fN

2

)

I1(fN) +
(fN)2

4
I2(fN)

)

. (2.48)
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This expression simplifies considerably by the use of the identity I1(x) −
x
2 I0(x) = −x

2 I2(x)

N2α =
fN

2

I1(fN) + I2(fN)

I0(fN) + I1(fN)
. (2.49)

An alternative method of fitting with a Gaussian is to match the areas under
the curves. This method requires calculation of the area under the curve
numerically. The value of α can be calculated by solving the following equation

A = 2

∫ ∞

0
Zhp(z)dz = Zhp(0)

√

π

α
erf(N

√
α). (2.50)

The first equality is the actual area under the curve and the second is the area
calculated using a Gaussian distribution approximation. The integral is of an
truncated Gaussian since Zhp(z) cuts off at z = ±√

αN and is thus in terms
of the error function

erf(x) =
2√
π

∫ x

0
e−t2dt. (2.51)

It is easy to solve Eq. (2.50) by numerical iteration once the area under the ac-
tual partition function Zhp(z) has been calculated. A useful starting point can
be calculated by expanding the error function for large values of its argument

erf(x) ≈ 1− e−x2

x
√
π
. (2.52)

The first approximation for α in this method is given by

α ≈
Z2
hp(0)π

A2
. (2.53)

Within the Gaussian approximation the initial fraction of inert chains can
be calculated. The full partition function has both Zhp(z) and the terms
corresponding to straight chains: δ(z−N)+δ(z+N). In this model the straight
chains thus have a weight 2 relative to the hairpin chains since by the same
counting procedure they can point in either the up or down directions. The
fraction of inert chains is denoted by g(λ), where λ denotes the deformation.
Initially λ = 1 and the fraction of inert chains is

g(1) =
2

2 +
∫ N
−N Zhp(z)dz

≈ 2

2 + Zhp(0)
√

π
αerf(N

√
α)

(2.54)

The probability distribution of the hairpin chains, excluding the straight
chains in terms of the chain’s end-to-end distance is given by

P (z) = [1− g(1)]

√

α

π

e−αN2( z
N
)2

erf(N
√
α)
. (2.55)
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Fig. 2.8 shows a comparison between the different approximations to the par-
tition function for the hairpin chain. It shows two different Gaussian approx-
imations as well as the asymptotic approximation. The asymptotic approx-
imation is not as good as the others because it requires a larger fN value
before it becomes accurate. As with most asymptotic results it is difficult to
predict at what values of fN the asymptotic approximation will improve. The
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Figure 2.8: A comparison of the actual partition function of
hairpinned chains at fN = 3 to two Gaussian approximations
and to an asymptotic approximation.

approximations are all of remarkable power when one considers that there are
distributions that one truncated at extents where they are still large. Moreover
the mean number of hairpins is very small in the example chosen (fN = 3).
The strong Gaussian character arises because despite there being few steps in
the random walk they are of variable, random lengths.

2.2.4 Comparison of spring constants

A main chain elastomer is made up of polymer chains of different character. It
is important to estimate the moduli of the different types of chains so that the
way in which the rubber stretches can be modelled. To this end a comparison
of the spring constants, k, of three different chain is now made. These chains
are; the Gaussian chain, the hairpin chain, and the undulating chain. For the
Gaussian chain

Fg = −kBT
R2

2l2N
(2.56)
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fg = −∂Fg

∂R
=
kBTR

l2N
(2.57)

⇒ kg =
kBT

l2N
. (2.58)

For the hairpin chain the asymptotic limit is used. This will provide an over-
estimate of the spring constant for smaller values of fN .

Fhp ≈ −kBT
R2fN

2N2l2
(2.59)

fhp ≈ kBT
fN

N2l2
R (2.60)

⇒ khp = kBT
fN

l2N2
(2.61)

This shows that when fN ∼ 5 the Gaussian chains are much stiffer than the
hairpin chains. The estimate of the spring constant of the undulating chain is
given in §2.E. The result obtained is

fz ≈ 4uh
kBT

J

L
δR (2.62)

⇒ ku =
4uhJ

kBTL
(2.63)

≈ 4uh
Nl2

(2.64)

The ratio of moduli of chains is

ku : kg : khp =
4uh
Bl2

:
kBT

Nl2
:
kBTfN

N2l2
(2.65)

here the combination fN is retained since it is an estimate of the number of
hairpins per chain, nhp. Then

uh
kBT

≈ ln N
nhp

, using the definition of f . In any

event, one expects uh > kBT because hairpins are well-defined and relatively
infrequent events. Thus the ratio of the spring constants becomes

ku : kg : khp = 4 ln
N

nhp
: 1 :

nhp
N

(2.66)

From these estimates it is clear that when the hairpins are removed from a
chain it becomes significantly harder to stretch. The chains in this state can
only have their end-to-end distance increased by a small amount because their
longitudinal spatial extent is near to their arc length.

2.2.5 Perpendicular direction

In the plane perpendicular to the nematic direction the hairpin chains have
two sources that can give rise to an end-to-end distance: Gaussian distributed
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undulations and the position of individual hairpin steps. In §2.B the mean
square displacement of the undulations is calculated as

〈R2〉und =
LkBT

J
. (2.67)

The mean square distance due to the width of a hairpin in the perpendicular
plane can be estimated from the result of §2.D: the average number of steps in
a hairpin chain is ∼ fN . Assuming the span distribution to be approximately
Gaussian then it follows that

〈R2〉hp ≈ (fN)w2 (2.68)

where w is the characteristic width of the hairpin. In the hairpin regime when
fN ≪ N the undulations dominate the transverse direction. The transverse
excursions are thus dominated by the Gaussian excursions of the undulations.
Henceforth it is assumed that the entire perpendicular extent is due to the
undulations and can be modelled as being Gaussian distributed.

2.3 Non-affine deformation model

Imagine many hairpinned chains connected together to form a network. The
mechanism of stretching of the chains is motivated by the properties of the
individual hairpinned chains and will be modelled as follows. At first when
the network is deformed, the hairpinned chains will deform quasi-affinely. The
undulating, non-hairpinned chains will not deform significantly because their
modulus is much higher than that of the undulating chains. Once a chain
has reached its maximum extent (lost its hairpins) because of the extension
of the network, it is inert as far as strain accommodation is concerned and
passes on the requirement of taking up its share of the strain to neighbouring
slack chains. These then take up the slack until they too become inert. The
deformation of the hairpin chains is regarded as super-affine because they are
suffering a deformation progressively larger than that of the bulk. The chains
form a 3-D network because they have a transverse extent. The finite lateral
extent of each hairpin and the transverse random walk due to undulations gen-
erate this three dimensionality. These two processes add incoherently so that
the rubber is almost Gaussian in its transverse extent. In the hairpin regime
the undulations dominate the finite lateral extent of the hairpins. Locally
we assume that the network can be regarded as a one dimensional series of
polymer strands. In extending this to a 3-D model we assume that the connec-
tions in the network allow the slack to be taken up by the neighbouring chains
in the way described above. The elongation of the network is illustrated in
Fig. 2.9. When modelling this mechanism of extension it is important to keep
track of two populations of chains in the rubber: those containing hairpins and
those without. It is assumed that the latter, straight chains, are completely



2.3. NON-AFFINE DEFORMATION MODEL 25

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

a)

b)

Figure 2.9: The figure illustrates the elongation of the net-
work of hairpin chains. a) shows an undeformed section and
b) shows the same section after a small deformation. The cen-
tral strand has taken up most of the deformation leaving the
surrounding two unchanged.

inert. As the rubber is stretched the inert chains remain unchanged whilst
the hairpinned strands have their lengths changed in proportion to their cur-
rent length so that this population takes up all the macroscopic strain, and
the sample as a whole accommodates the required macroscopic strain. Those
that are at their maximum length are not able to stretch any more and so
do not contribute to the total length change of the rubber. Two measures of
the deformation are thus required: the microscopic deformation, λ, and the
macroscopic deformation, Λ. Chains cannot deform affinely with the bulk, Λ,
since some do not extend at all and others must take up more than their share
of deformation. To describe a hairpin chain we adopt the following reduced
units (as in §2.2.3) for arc length L and end-to-end distance parallel to the
nematic field, R, in terms of a persistence length, l

z =
R

l
; N =

L

l
(2.69)

The macroscopic deformation, Λ, can be related to the microscopic deforma-
tion, λ as follows. The fraction of chains with an initial end-to-end distance z
is given by P (z), excluding the straight chains. The fraction of straight chains
is denoted by g(λ). The normalisation condition for P (z) is thus

1 = g(1) + 2

∫ N

0
P (z)dz, (2.70)

where g(1) is the initial fraction of the chains that are straight, and the sym-
metry of P (z) has been used to halve the interval of integration. As the sample
is stretched, chains from the hairpinned population with lengths initially in
the interval [Nλ , N ] fall into the straight population so the increased fraction
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of straight chains, g(λ), is given by

g(λ) = g(1) + 2

∫ N

N/λ
P (z)dz. (2.71)

The macroscopic deformation can then be identified with the new mean span
RΛ with respect to the initial mean span, R1:

RΛ = g(λ)N + [1− g(λ)]λ〈z〉hp (2.72)

ΛR1 = g(λ)N + [1− g(λ)]2

∫ N/λ

0
λz

(

P (z)

1− g(λ)

)

dz. (2.73)

The length of an average chain is defined as the weighted average of the
straightened chain length and the length of the hairpinned chains. The latter,
λ〈z〉hp consists of the average 〈z〉hp of the population initially in the interval
z = (0, Nλ ) that is still hairpinned after extension λ, taken to its current
average length by multiplication by λ. The normalisation of the part of the
probability distribution for the hairpinned chains has been written explicitly
for clarity. The average initial length of the chains is defined as above but
with Λ = λ = 1

R1 = Ng(1) + 2

∫ N

0
zP (z)dz. (2.74)

In both Eq. (2.74) and Eq. (2.73) the first term on the right hand side is the
length taken up by the fully extended chains and the second term is the length
taken up by the remaining chains which are at various degrees of extension and
have varying numbers of hairpins in them. Eq. (2.73) determines Λ[P (z), λ]
in terms of the internal microscopic deformation and the initial span distribu-
tion. This is a departure from the usual affine deformation approximation for
networks because of the hard constraints met when the hairpins are absent or
are eliminated. The macroscopic deformation, defined in Eq. (2.73), can be
rewritten as

Λ =

[{

(g(1) + 2
∫ N
N/λ P (z)dz

}

N + 2λ
∫ N/λ
0 zP (z)dz

]

Ng(1) + 2
∫ N
0 zP (z)dz

. (2.75)

The asymptotics of Λ can be calculated as follows

dΛ

dλ
=

2

R1

∫ N
λ

0
zP (z)dz. (2.76)

It is clear that the gradient goes to zero as λ → ∞. The value of Λ, from
Eq. (2.75), is then

Λ(∞) =
2N
∫ N
0 P (z)dz + g1N

Ng1 + 2
∫ N
0 zP (z)dz
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=
N

Ng1 + 2
∫ N
0 zP (z)dz

≡ N

Ng1 + (1− g1)〈z〉hp(λ = 1)
. (2.77)

The average (reduced) extent of the hairpinned chains before deformation is
denoted by 〈z〉hp(λ = 1). Intuitively this result simply gives the maximum
macroscopic deformation as the ratio of the length of the sample when all the
chains are stretched to their full extent, to that when all chains are at their
initial lengths. To calculate how Λ reaches its asymptotic value the following
general result is applied to Eq. (2.75)

∂

∂z

∫ b(z)

a(z)
f(x, z)dx =

∫ b(z)

a(z)

∂f

∂z
dx+ f(b(z), z)

∂b

∂z
− f(a(z), z)

∂a

∂z
. (2.78)

The following is obtained on applying l’Hôpital’s rule to the result

Λ =
1

R1

(

Ng1 + 2N

∫ N

0
P (z)dz − N2P (0)

λ
+O

(

1

λ

)2
)

. (2.79)

Rearranging this expression results in

λ ≈ N2P (0)

R1

1

Λ(∞)− Λ
. (2.80)

This expression indicates that the microscopic deformation diverges at Λ(∞)
corresponding to stretching all the hairpin chains. Only those that were ini-
tially of very small length are still in the hairpin population, hence the P (0)
factor. These chains of vanishing end-to-end extent require a very large λ
locally to attain z = N , i.e. full extension. Interestingly, the hairpins with
zero end-to-end distance are never stretched but since they constitute a set
of zero measure, their contribution is vanishingly small for very large defor-
mations. At Λ ≥ Λ(∞) this model suggests that the hairpin rubber should
become very rigid since one is now deforming the undulations that represent
the limited disorder remaining in chains. The approach to Λ(∞) has been
crudely modelled — for instance as soon as there is a percolating path of inert
chains in the network, the modulus should abruptly rise and the remaining
hairpin population have little further relevance.

Initially, at λ = 1
(

dΛ

dλ

)

λ=1

= 1− Ng(1)

R1
(2.81)

Thus expanding close to λ = 1

Λ ≈ 1 + (λ− 1)

(

1− Ng(1)

R1

)

= λ− (λ− 1)
Ng(1)

R1
(2.82)
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After the rubber has been deformed by Λ > 1 and the stress is released the
rubber contracts back to its initial equilibrium position. This is because each
of the extended chains has recorded its initial position via cross-linking, so
chains that were moved into the inert population by the deformation know
how to re-enter the hairpin population.

2.3.1 Macroscopic strain in the asymptotic approximation

A Gaussian approximation to the partition function can be used to calculate
the macroscopic deformation. In what follows the curvature approximation
will be used for numerical illustrations but the formulae are equally applicable
to other Gaussian approximations, differing merely by the method of calculat-
ing the parameter α. This results in the following formula for the macroscopic
deformation

Λ =
N
[

g(1) + (1− g(1))(1 − erf(N
√
α/λ)

erf(N
√
α)

)
]

+ λ(1−g(1))
erf(N

√
α)

√
απ

(1− e−N2α/λ2
)

Ng(1) + 1−g(1)
erf(N

√
α)

√
πα

(1− e−N2α)

The conversion between microscopic and macroscopic deformation is shown
in Fig. 2.10. Note the curves only depend on fN and not on N . Each of
the curves illustrates the divergence in microscopic strain when most of the
chains have been moved into the inert population. There is then a very small
fraction of chains that are deforming by a huge amount to achieve the required
macroscopic strain.

2.4 Hairpin chain network free energy

In an elastomer the ends of the polymer chains are cross-linked to other chains
so the end-to-end distance is a quenched variable. However, for a sufficiently
large block of rubber the probability distribution of end-to-end distances of the
chains can be averaged over. In contrast the hairpins are annealed degrees of
freedom. For a polymer chain with a fixed end-to-end distance the number of
hairpins on the chain can fluctuate around the equilibrium number of hairpins.
The difference between quenched (qd) and annealed (ad) degrees of freedom
is clear in the partitions functions. Suppose X represents a degree of freedom
which can be annealed or quenched and Y represents all the other degrees of
freedom in the problem then [38]

Zqd = e−βFqd = TrY

[

e−βH(X,Y )
]

(2.83)

Zad = e−βFad = TrX,Y

[

e−βH(X,Y )
]

(2.84)

For the quenched degree of freedom it is assumed that the system is sufficiently
large so that all of the different values of X can be realised. The probability
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Figure 2.10: The microscopic to macroscopic deformation con-
version curves for temperatures of fN = 1, 2, 5, 10, 50 going
from left to right with Λ(∞) = 1.7, 2.0, 2.8, 3.8, 8.8 respec-
tively. The Gaussian approximation to the hairpin partition
function using a fit to the curvature was employed.

of the different values of X can then be used to calculate the free energy

F =

∫

P (X)Fqd(X)dX, (2.85)

where P (X) is the probability distribution of the quenched degree of freedom
X. For the hairpin rubber the network free energy per strand associated with
the direction parallel to the nematic field as can be expressed as

F‖(λ) = −2kBT

∫ N/λ

0
P (z) ln [ZundZhp(λz)] dz

−2kBT

∫ N

N/λ
P (z) ln [Zund] dz − kBTg(1) ln [Zund] , (2.86)

where the first integral calculates the free energy of the hairpin chains and
treats their undulations and hairpin degrees of freedom as independent so
the partition functions can be multiplied. The second integral calculates the
energy of the chains that are moved to the straightened population as a result
of stretching. The last term is the free energy of those chains that were initially
straight. This expression can be simplified by splitting up the logarithm in
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the first term. The resulting expression is

F‖ = −2kBT

∫ N/λ

0
P (z) lnZhp(λz)dz

−2kBT

∫ N

0
P (z) lnZunddz − kBTg(1) lnZund,

= −2kBT

∫ N/λ

0
P (z) lnZhp(λz)dz − kBT lnZund. (2.87)

The assumption that the hairpin and undulating parts are independent results
in the separation of the undulating part of the problem. Since the undulating
degree of freedom only contributes a constant to the free energy in the parallel
direction it can be neglected. Expanding the free energy expression for large
λ yields the result

F‖ ≈ −2kBTP (0)

λ

(

N lnZhp(N)−
∫ N

0

Z ′
hp(z)

Zhp(z)
zdz

)

+O

(

1

λ2

)

(2.88)

Substituting the expansion of Λ for large λ from Eq. (2.80) into this expression
it is clear that F‖ increases linearly with Λ

F‖ ≈ 2kBTR1(Λ− Λ(∞))

N

(

lnZhp(N)−
∫ N

0

Z ′
hp(z)z

Zhp(z)N
dz

)

(2.89)

Note that the dependence on P (0) cancels out. The integral in this expression
can be evaluated easily using the Gaussian approximation. The linear depen-
dence of the free energy on Λ will produce a plateau in the nominal stress
as the macroscopic deformation approaches its maximum value. After this
plateau is reached the nominal stress will rise very quickly because the system
now consists mainly of undulating chains. Note that this result is due to the
mechanism of stretching. It arises because we have two separate populations,
one of which is inert. As we gradually shift all chains to the second popula-
tion fewer and fewer chains are accommodating the strain and the material
becomes very weak. For the hairpin rubber the Gaussian approximation to
the partition function can be substituted in and the integrals of Eq. (2.87)
completed.

F‖ = −2kBT

∫ N/λ

0
P (z) lnZhp(λz)dz

= −2kBT
[1− g(1)]

erf(N
√
α)

√

α

π

{

∫ N/λ

0
(lnZhp(0)− αz2λ2)e−αz2dz

}

= −kBT
[1− g(1)]

erf(N
√
α)

2√
π

{

∫
N

√
α

λ

0
lnZhp(0)e

−x2
dx− λ2

∫
N

√
α

λ

0
x2e−x2

dx

}
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= −kBT
[1− g(1)]

erf(N
√
α)

[{

lnZhp(0) −
λ2

2

}

erf(N
√
α/λ)

+ N

√

α

π
λe−N2α/λ2

]

. (2.90)

The behaviour of the rubber at λ = 1 is important because it tells us how stiff
the rubber is initially. It can be found by looking at the gradient of the free
energy there

(

dF‖
dλ

)

λ=1

= kBT (1− g(1))

{

1 +N
Zhp(N)

∫ N
0 Zhp(x)dx

(lnZhp(N)− 1)

}

. (2.91)

The behaviour of this expression can be analysed most easily for large fN by
using the asymptotic expression for the partition function given in Eq. (2.44).
Using this equation produces the following in the limit fN → ∞

∫ N

0
Zhp(z)dz ≈ efN (2.92)

g(1) ≈ 1

1 + 2efN
. (2.93)

Thus using the above equations for large fN together with Eq. (2.41), then
Eq. (2.91) becomes

(

dF‖
dΛ

)

λ=1

≈ kBT

{

1 + e−fN (2fN + (fN)2) ln
2fN + (fN)2

Ne

}

. (2.94)

Thus in the limit of large fN the hairpin rubber is slightly harder than the
Gaussian rubber by an exponentially small amount. Note that this difference
is due to the cost of each direction change (uh) and that as f → ∞ the parallel
direction becomes as hard as a Gaussian rubber. The exponential dependence
on fN means that this expression is valid for even moderately large fN i.e.
when there are only about three hairpins. This expression can be expanded
for very small fN , that is low T

∫ N

0
Zhp(z)dz ≈ 2fN + (fN)2 (2.95)

g(1) ≈ 1

1 + 2fN + (fN)2
. (2.96)

Substituting these expressions into the gradient of the free energy results in

(

dF‖
dΛ

)

λ=1

≈ 2kBT ln
2fN + (fN)2

N

= −2uh. (2.97)
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Thus for small fN the hairpin part of the rubber will spontaneously elongate
as it has a negative nominal stress and hence has no mechanism for competing
with the transverse degrees of freedom. Note that the hairpin degrees of
freedom on their own undergo spontaneous expansion here. The transverse
degrees of freedom have not yet been included, but will cause the rubber to
elongate via volume conservation.

2.4.1 Transverse degrees of freedom

In the transverse direction there are contributions from both the small undu-
lations about the nematic direction and the transverse extent of the hairpins.
As mentioned previously, these processes will be treated together, producing a
Gaussian distribution of end-to-end distances in the perpendicular plane and
hence a Gaussian rubber in the perpendicular direction. As a result the free
energy in the transverse direction depends on the macroscopic deformation
like a Gaussian rubber

F⊥ = 2

(

1

2
kBTΛ

2
⊥

)

, (2.98)

the factor of 2 coming from the two transverse dimensions. For a volume
conserving uniaxial deformation then

1 = Λ‖Λ
2
⊥. (2.99)

For uniaxial deformations writing Λ‖ = Λ gives the free energy expression as

F⊥ =
kBT

Λ
. (2.100)

Thus as the elastomer is elongated, the free energy of the perpendicular degrees
of freedom is reduced because the initial and final points of strands are brought
into line and as a result the conformational entropy increases.

2.4.2 Free energy curves

To calculate the total free energy of the rubber the transverse Gaussian degrees
of freedom and the hairpin degrees of freedom parallel to the nematic field
are combined. The free energy depends on weakly on the length N of the
polymer chains. TheN dependence is logarithmic in Eq. (2.89) because it only
enters Zhp. Fig. 2.11 shows the free energy as a function of the macroscopic
deformation Λ. For the purposes of numerical illustrations the value N =
100 is used (experimentally it is difficult to work with very long main chains
because of their slow dynamics). The minimum in the free energy is at a Λ
greater than one when there are a few hairpins, and the hairpin degrees of
freedom are weak. As the number of hairpins is increased the minima moves
slightly below Λ = 1 and then back to Λ = 1 for very large fN . This shows
that on cross-linking the rubber will elongate to a new equilibrium value. As
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Figure 2.11: The free energy of a hairpin rubber as a func-
tion of the macroscopic deformation for temperatures such that
fN = 4.5, 5, 6, 7 and for a chain of length N = 100. The curves
are calculated up to the end of the stress plateau, Λ(∞). After
this the rubber rapidly attains the modulus of extended worm
chains.

the rubber is deformed further, the free energy gradually becomes linear in the
deformation Λ because more of the chains are now inert with the result that the
microscopic deformation, λ, is concentrated in very few chains. The number
of chains where energy is being stored reduces with Λ and the deformation
becomes easier subsequently. This linear increase with Λ contrasts with the
quadratic Λ2 response of a Gaussian rubber.

2.4.3 Nominal stress curves

The spontaneous elongation is even clearer on the nominal stress curves.
Fig. 2.12 shows the nominal stress dF

dΛ as a function of the macroscopic defor-
mation Λ. Each of the curves shows the nominal stress beginning to plateau
as hairpins are pulled out. After all the hairpins have been pulled out, then
only the stiff undulating chains remain so the nominal stress will then increase
very rapidly (not modelled here). As the temperature of the rubber is reduced
the average number of hairpins on a chain reduces. This causes the parallel
direction to become weaker and hence the spontaneous elongation on cross-
linking increases. Eventually the hairpin degrees of freedom will be so weak
that the rubber will immediately elongate to its maximum extent so that it
consists of undulating chains alone. The very large modulus of the undulating
chains will then resist the transverse Gaussian degrees of freedom so that the
rubber can find its equilibrium. The average number of hairpins on a chain
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Figure 2.12: The nominal stress as a function of the macro-
scopic deformation of a hairpin rubber for chains of length
N = 100.

when the rubber first elongates to its maximum extent can be calculated as
follows. If the rubber just reaches its maximum extent then as λ → ∞ the
nominal stress will be zero at this point. Using Eq. (2.89) and replacing the
integral using the Gaussian approximation then

dF

dΛ λ→∞
=

2kBT

Λ(∞)

(

lnZhp(N) +
2N2α

3

)

− kBT

Λ(∞)2
(2.101)

Using the simplest approximation for N2α = fN
2 from the asymptotic expan-

sion yields a value of approximately fN = 4.3 when N = 100. This corre-
sponds to the lowest average number of hairpins possible on the chain before
the chain spontaneously extends to its maximum extent on cross-linking. In
practise it will not elongate to its maximum extent because there will be
more and more percolating paths of inert chains which will gradually make
the rubber harder. However, before this situation is reached the above model
applies.

The spontaneous elongation on cross-linking the polymer chains has to
be taken into account in subsequent measurements. The initial spontaneous
elongation of Λs occurs on cross-linking. After this elongation any further
deformation carried out will be in addition to this deformation. Fig. 2.13
shows the nominal stress curves plotted as a function of the experimentally
measured deformation, Λ′

Λ′Λs = Λ. (2.102)

Thus networks with hairpins should have a longer stress-strain plateau, termi-
nated by the final removal of hairpins. Networks that spontaneously deform
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to their limit Λ(∞) will be instantly strong in extension but rubbery in com-
pression along the director — most unusual materials.
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Figure 2.13: The nominal stress as a function of the mea-
sured macroscopic deformation of a hairpin rubber for chains
of length N = 100 .

The spontaneous extension shown in this model may be a consequence of
the way in which the chains are split up into non-hairpinned and hairpinned
chains in the deformation mechanism. Since the non-hairpinned chains are
separated out from the hairpinned chains then the remaining hairpinned chains
will try to achieve their equilibrium distribution. Consequently the sample
extends. In order to explore this effect in more detail the splitting up of the
deformation between the chains should be done in a less singular way, such
that the non-hairpinned chains experience some small elongation depending
on their stiffness. The limit of infinite chain stiffness should then be taken.

2.5 Conclusions

An elastomer composed of main chain liquid crystalline polymers was con-
sidered. The strong nematic field results in creation of hairpin defects. The
statistics of these hairpin chains can be calculated and can be approximated
well by a truncated Gaussian distribution. The transverse degrees of free-
dom that accompany the hairpins are undulations of the chains about the
nematic director. These undulations produce a Gaussian distribution for the
transverse extent. The difference in the spring constants of undulating and
hairpinned chains motivated a non-affine stretching mechanism of the rubber.
Cross-linking the chains results in a rubber that spontaneously extends at
low temperatures. As the rubber is deformed along the director it exhibits a
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plateau in its nominal stress. This is because the number of active chains that
are being stretched is gradually depleted so that fewer and fewer chains are
accommodating the stretch. Experimentally it is possible that both the ex-
tremes of main chain elastomers can be found. In the experiments of Wermter
et al. [30] a polydomain main chain rubber showed a very long plateau (up to
Λ ∼ 5) even after it had been aligned by the initial strain. Order parameter
measurements confirmed that initially the plateau is due to director reori-
entation with its associated soft elastic response. An effective monodomain
situation is achieved by λ ∼ 3.5, leaving an extended soft plateau, possibly
due to a hairpin rubber response modelled here.

Clarke et al. [31] found that monodomain main chain elastomers suffered
a large spontaneous thermal deformation of Λ ∼ 4.5. These were then very
stiff along the director. Perpendicular extensions were very soft, presumably
associated with the director rotation, conventional soft elasticity in nematic
rubber. It is possible that hairpins were eliminated during thermal expansion
and cooling from the isotropic synthesis to the lower experimental tempera-
ture. It would be interesting to know if such elastomers were soft along their
director if extended at more elevated temperatures.

An interesting aspect of the data of Wermter et al. [30] that was not
modelled here is the behaviour after the plateau. The plateau in the stress
is higher as we decrease the temperature and the modulus of the elastomer
after the plateau is higher as temperature is reduced. This indicates that
modulus of the rubber may be dependent on the dynamics of the system [39].
At higher temperatures it is possible for the sharp hairpin defects to reptate
in their tubes and thus move allowing the rubber to deform.
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2.A Geometry of a hairpin at zero temperature

A polymer chain with a bend constant, B, in a nematic field with strength J
has a free energy of the form

F = F0 +

∫ L

0
ds

[

1

2
B

(

dθ

ds

)2

+
1

2
J sin2 θ

]

. (2.103)

The hairpin configuration which has the minimum free energy and obeys the
following boundary conditions is required

θ = 0 ; s→ −∞
θ = π ; s→ ∞

Minimising the free energy expression Eq. (2.103) with respect to θ results in
the Euler-Lagrange equation:

d2θ

ds2
=

1

2l2h
sin 2θ, (2.104)

where lh =
√

(B/J). This equation has the solution:

θ = 2 tan−1
[

es/lh
]

. (2.105)

This shows that the hairpin has a size of order lh. The misalignment dies
away exponentially from the hairpin thereafter. As a result hairpins have a
separable character. The size becomes very large if the nematic field gets weak
or if the bending energy cost becomes very high. Substituting this expression
back into the expression for the energy of the hairpin gives the result:

uh = 2(BJ)1/2. (2.106)
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2.B Undulating chain statistics

The free energy of an undulating chain with free ends.

The worm-like chain model of a polymer can be used to write down the par-
tition function of a polymer in a nematic field as:

Z =

∫

Du(s) exp

{

−β 1
2

∫ L

0
ds

[

B

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

− Ju2z

]}

, (2.107)

where u is the tangent vector to the polymer. In strong fields the tangent
vector only makes small deviations away from the nematic direction, z, u can
be written as:

u ≈ z− σ

where σ is perpendicular to z. The rare and isolated hairpin events are ig-
nored. Using the above expansion to second order in σ reduces the partition
function to

Z =

∫

Dσ(s) exp

{

−β 1
2

∫ L

0
ds

[

B

∣

∣

∣

∣

∂σ

∂s

∣

∣

∣

∣

2

+ Jσ2

]}

. (2.108)

To evaluate this Gaussian functional integral the Fourier representation is
required

f(x) =
∑

q

eiqxf(q) (2.109)

f(q) =
1

L

∫ L

0
dxe−iqxf(x), (2.110)

where q = 2πn
L and n is an integer. The partition function can then be written

as

Z =

∫

Dσq exp
{

−βL
2

∑

q

(

Bq2 + J
)

|σq|2
}

. (2.111)

The result of this integration is the product

Z = A
∏

q

2

βL (Bq2 + J)
(2.112)

here A is a multiplicative constant from the path integral. This expression
can be evaluated in two ways. The first requires the formula

∞
∏

n=1

1

1 +
(

x
nπ

)2 =
x

sinhx
(2.113)
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The result is

Z ∝
L
2lh

sinh( L
2lh

)
(2.114)

The free energy associated with this partition function is then

F = F0 − kBT

[

ln
L

2lh
− ln sinh

(

L

2lh

)]

(2.115)

If L/lh is large then this expression shows that the free energy is approxi-
mately linear in L and hence that the free energy of an undulating chain is
proportional to its length. The alternative way to evaluate Eq. (2.112) is to
write the product as

Z = A exp

{

−
∫ qmax

qmin

Ldq

2π

(

ln
(

Bq2 + J
)

+ ln
βL

2

)}

. (2.116)

This integral can be evaluated by substituting qmin = 0 and qmax = 2π
lh
. The

associated free energy is

F = F0 + kBT

(

L

lh
ln
JβL

2
− 2L

lh
+
L

lh
ln
(

1 + 4π2
)

)

(2.117)

This expression is also essentially linear in L. This justifies the assumption
that the hairpin defects and the undulating chain sections are very weakly
coupled. An hairpin defect essentially acts as a node as regards undulations
of a chain because of the extreme cost of additional bend around a hairpin
defect. Thus if an undulating chain is divided up into segments separated by
hairpins then the free energy of the undulating sections is the same as that of
the reassembled sections.

The end-to-end distribution of undulating chains.

Using the same small angle approximation as above the probability distribu-
tion for end-to-end vectors projected onto the perpendicular plane, R⊥ can
be calculated.

P (R⊥) =

〈

δ

(

R⊥ −
∫ L

0
dsσ(s)

)〉

(2.118)

=

∫

Dσ(s)
∫

d2p

(2π)2
exp

{

ip ·R⊥ − ip ·
∫

dsσ(s)

− β

2

∫ L

0
ds

(

B

∣

∣

∣

∣

∂σ(s)

∂s

∣

∣

∣

∣

2

+ Jσ(s)2

)}

(2.119)

This integral can be evaluated by using the Fourier representation. The result
is

P (R⊥) ∝ e−
βJ
2L

R2
⊥ (2.120)
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The mean square end-to-end distance in the perpendicular plane of the ends
of the undulating chain is

〈R2
⊥〉 =

LkBT

J
(2.121)

This result does not depend on the bend constant. This is because increasing
the bend constant whilst increasing the persistence length of each segment,
reduces the tilt angle. These two effects cancel out and as a result the projected
length is the same so the mean square distance travelled in the perpendicular
plane is independent of the bend constant.
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2.C Induction method to count number of chain
configurations

The Laplace transform method can be used to calculate the number of config-
urations of hairpins for the first ten terms. The results of this calculation are
shown in table 2.1. From this table the general form for the number of config-

Number of defects Number of Configurations Ωn(z)

0 δ(z +N) + δ(z −N)

1 2

2 N

3 N2(1−
(

z
N

)2
)/2

4 N3(1−
(

z
N

)2
)/8

5 N4(1 −
(

z
N

)2
)2/32

6 N5(1−
(

z
N

)2
)2/192

7 N6(1−
(

z
N

)2
)3/1152

8 N7(1−
(

z
N

)2
)3/9216

9 N8(1−
(

z
N

)2
)4/73728

10 N9(1−
(

z
N

)2
)4/737280

Table 2.1: The number of configurations of arranging n hair-
pins on a polymer chain calculated as a function of end to end
distance for the first 10 hairpins.

urations of n defects on a chain can be guessed and then proven by induction.
For the odd case the guess is

Gn(z,N) =
2

(n− 1)!!2
(N2 − z2)

n−1
2 , (2.122)

and for the even n case

Gn(z,N) =
2

n(n− 2)!!2
N(N2 − z2)

n−2
2 , (2.123)

where !! denotes the usual double factorial function. To use the method of
induction we proceed as follows. First it is necessary to split the sums up
into parts: those which started by taking a step up the z-axis and those which
started by taking a step down. Start with an even number of defects on a chain
that started in the up direction and denote the number of configurations of the
chain as a function of arc length N and end-to-end distance z as Gn+(z,N).
Another hairpin can then be added in by combining this with another section
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of chain of length N ′ with no hairpins that started out in the down direction:
G0−(z,N ′). This is illustrated in Fig. 2.14. To calculate all the possible

a) b)

Figure 2.14: The two diagrams show the two different ways of
adding one hairpin onto a chain that already has n hairpins
on it. Direction reversal (hence another hairpin) occurs at the
join. a) Shows the (n + 1) hairpin chain starting up and b)
starting down.

configurations of this new chain it is necessary to integrate over all possible
positions of the join with all possible partitions of arc length between the two
sections

G(n+1)−(z,N) =

∫ ∫

dz′dN ′Gn+(z
′, N ′)G0−(z − z′, N −N ′) (2.124)

The limits for the integrals follow from conservation of arc length. Applying
conservation of arc length for each segment results in

N −N ′ ≥ |z − z′| (2.125)

N ′ ≥ |z′| (2.126)

Applying conservation of arc length to the whole chain then

N ≥ −z′ + (z − z′) = z − 2z′ (2.127)

N ≥ z − (z − z′) = 2z′ − z (2.128)

The first inequality is obtained by considering the extreme case where the
new added on segment of chain goes entirely down a distance z′ and then
the existing part of the chain has to go up a distance z − z′ (assuming the
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hairpins use up a negligible amount of the end-to-end distance) to meet the
end-to-end distance constraint. Similarly the second inequality is obtained
by considering the case when the added segment goes up a distance z′ and
the existing segment must then come down a distance z − z′. Then the two
quantities must be added with the correct sign to obtain the arc length which
must be less that the total available arc length. Thus Eq. (2.124) can be
evaluated as follows: first we assert the form of Gn+(z,N)

Gn+(z,N) =
1

n(n− 2)!!2
(N + z)

n
2 (N − z)

n−2
2 . (2.129)

Then use this, together with the previous result that G0−(z,N) = δ(z + N)
to obtain

G(n+1)+(z,N) =

∫

dz′
∫

dN ′ 1

n(n− 2)!!2
(N −N ′ + z − z′)

n
2

× (N −N ′ − z + z′)
n−2
2 δ(z′ +N ′)

=

∫ 0

z−N
2

dz′
1

n(n− 2)!!2
(N + z)

n
2 (N + 2z′ − z)

n−2
2

=
1

n!!2
(N2 − z2)

n
2 (2.130)

Another defect can be added on in a similar way using the G that we have
just derived

G(n+2)+(z,N) =

∫

dz′
∫

dN ′ 1

n!!2
(N −N ′ − z + z′)

n
2

× (N −N ′ + z − z′)
n
2 δ(z′ −N ′)

=

∫ z+N
2

0
dz′

1

n!!2
(N − z)

n
2 (N − 2z′ + z)

n
2

=
1

(n+ 2)(n)!!2
(N + z)

n+2
2 (N − z)

n
2 (2.131)

This is now the original form for the Gn+(z,N) so if it is true for n then it is
also true for n + 2. A similar analysis can be carried out for the Gn+(z,N)
(Fig. 2.14 a))which goes through in the same way, except with z → −z. Thus
on combining the two results for the even case

Gn+(z,N) =
1

n(n− 2)!!2
(N + z)

n
2 (N − z)

n−2
2

Gn−(z,N) =
1

n(n− 2)!!2
(N − z)

n
2 (N + z)

n−2
2

Gn(z,N) = Gn−(z,N) +Gn+(z,N)

=
2

n(n− 2)!!2
N(N2 − z2)

n−2
2 (2.132)
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The odd result then follows by combining the intermediate result when only
one hairpin had been added to an even number of hairpins

Gn+(z,N) =
1

(n− 1)!!2
(N2 − z2)

n−1
2

Gn−(z,N) =
1

(n− 1)!!2
(N2 − z2)

n−1
2

Gn(z,N) = Gn−(z,N) +Gn+(z,N)

=
2

(n− 1)!!2
(N2 − z2)

n−1
2 (2.133)

This method agrees with the calculation via the use of the exponentiation of
the delta function/Laplace transform.
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2.D Interpretation of fN

The average number of hairpins on a chain at zero end-to-end distance can be
calculated as follows.

〈n〉(0) =
1

Zhp(0)

∞
∑

n=0

nGn(0, N)e−βuhn (2.134)

= −∂ lnZhp

∂(βuh)
(2.135)

The number of hairpins on a chain with zero end-to-end distance must always
be greater than or equal to one because a straightened chain cannot have
zero end-to-end distance. The mean number of hairpins on the chain can be
calculated using

Zhp(0) = f(I0(fN) + I1(fN)) (2.136)

Using the chain rule results in the following

〈n〉(0) = (fN)
∂ lnZhp

∂(fN)
(2.137)

= fN +
I0(fN)

I0(fN) + I1(fN)
(2.138)

Since the modified Bessel function is asymptotic to x−1/2ex then for moder-
ately large fN it follows that

〈n〉(z = 0) ≈ fN +
1

2
(2.139)

Thus fN can be interpreted as the average number of hairpins on a polymer
chain with span of z = 0.
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2.E Spring constant of an extended worm-like
chain

The spring constant of an extended worm can be calculated as follows. The
partition function of a worm chain in a nematic field can be written as

Z(f) =

∫

Du(s) exp

{

−β 1
2

∫ L

0
ds

[

B

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

− Ju2z

]

+ βf ·R
}

,

where f is the applied tension. In a strong nematic field it is assumed that
the direction of the polymer segments fluctuate around the director direction
(ẑ). A small angle approximation can then be used by defining

u = ẑ+ σ +O(σ2),

where σ is a vector perpendicular to ẑ, required to keep u a unit vector. Using
this substitution and working to first order in σ the partition function can be
calculated as

Z =

∫

Dσ(s) exp

{

−β 1
2

∫ L

0
ds

[

B

(

∂σ

∂s

)2

+ Jσ2 + fzσ
2

]}

,

Where the delta function constraint has now been satisfied. Now a discrete
Fourier transform is performed on σ using

σ(s) =
∑

q

σ(q)eiqs

where q is a scalar. The partition function is then given by

Z =

∫

Dσ(q) exp

{

−β 1
2

∑

q

[

Bq2 + J + fz
]

|σ(q)|2
}

.

From the principle of equipartition of energy we have that each of the modes
has energy kBT

2 . Consequently

|σ(q)|2 = kBT

Bq2 + J + fz
.

By integrating over all q values the average value of |σ|2 can be calculated

〈|σ|2〉 = kBT

∫ ∞

−∞

dq

2π

1

Bq2 + J + fz
=

kBT

2
√

B(J + fz)

Here it is assumed that the summation can be converted to an integral because
the q values are so closely spaced. The limits of the integrand are taken to be
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infinity because the integrand decays very quickly. This result can be related
to the average length of the chain as follows

〈Rz〉 =

∫ L

0
ds uz

≈
∫ L

0
ds

(

1− σ(s)

2

)

= L

(

1− kBT

4
√

B(J + fz)

)

Denoting δRz = Rz(fz) − Rz(fz = 0) results in the following formula for the
force as a function of extension

fz =
8
√
BJJ

kBTL
δRz (2.140)

This formula provides a useful estimate of the spring constant of a worm chain
in a strong nematic field.





Chapter Three

Polarisation of chiral liquid
crystal elastomer

T
he subject of this chapter is piezoelectricity in liquid crystal elastomers.
Whilst there are mechanisms of piezoelectricity in liquid crystal elas-

tomers that do not require chirality, such as the flexoelectric effect, here a
mechanism that relies on chirality is considered. This mechanism is based
on a polymer chain of chiral monomers being deformed so that a binormal
bias develops. The resulting polarisation relaxes away even in a non-ideal
rubber due to the relaxation of the director, n. After looking at two non-
ideal cases: an elastomer composed of a random mixture of polymer chains of
different lengths, and a network formed by a two stage cross-linking process
using rod cross linkers for the second stage, three ways around this problem
are suggested:

(i) Dynamics where the director, n, responds more slowly than the polymer
network,

(ii) Rigid anchoring of the director — e.g. in the smectic A phase,

(iii) Binary mixtures of chiral and non-chiral chains.

3.1 Introduction

3.1.1 Piezoelectricity in Crystals

In 1880 Pierre and Jacques Curie published their experimental discovery of
piezoelectricity. They discovered that certain crystals when subjected to a
mechanical stress developed a surface charge. The name piezoelectricity is
derived from the Greek word piezein meaning to squeeze or press, and has

49
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two manifestations: the direct piezoelectric effect in which an applied me-
chanical stress results in an electric field across the material, and the converse
effect in which an applied electric field results in a mechanical deformation.
Only non-centrosymmetric crystals can be piezoelectric. This is because if the
crystal were centro-symmetric then no combination of uniform stresses would
produce a separation of the centres of positive and negative charge and thus
a polarisation. The crystal structure should also define at least one axis along
which the polarisation points. This axis need not be unique, and defines the
direction the polarisation points in response to, for example, an elongation.
There are 21 non-centrosymmetric crystal symmetry classes of which 20 have
at least one polar axis in their structure (see for example [40]). Pyroelectric
materials, which develop a polarisation in response to temperature change,
further require that the polar axis is unique and thus only 10 of the 20 piezo-
electric crystal symmetry classes are pyroelectric. A large variety of materials
are now known to exhibit piezoelectricity including modern materials such as
lithium niobate, biological materials such as bone and tendon, and polymers
such as polyvinlidene fluoride. They have several useful applications including
generating sparks, sensing vibrations, actuators to move precisely controlled
small distances, and transducers for converting electrical energy into vibra-
tional energy (often ultrasound ∼ 50kHz).

The relationship between the polarisation and the mechanical stress can
be expressed as

Pi = dijkσjk, (3.1)

where Pi is the polarisation in direction i, σjk is the stress, with force in
the j direction on the face with normal in the k direction and dijk are the
coupling constants. The coupling constants connecting polarisations in the
x,y and z directions with stresses applied along the x,y and z directions
and shears about the x, y and z axes. Since σjk is a symmetric tensor, the
antisymmetric part of dijk in jk is not meaningful because it produces no
polarisation. Thus dijk is symmetric under interchange of j and k and has 18
independent components as a result. As the symmetry of the crystal increases
the number of independent constants decreases.

In crystalline materials the piezoelectric effect can be understood as result-
ing from the underlying crystal symmetry. However, piezoelectric-like effects
have been predicted and discovered in less ordered materials.

3.1.2 Piezoelectricity in liquid crystals

In liquid crystals an effect similar to piezoelectricity was predicted by Meyer
[41], however, due to its very different microscopic origin it is now known
as the flexoelectric effect. It is not a consequence of chirality and thus is
present even in centrosymmetric systems. Consider a liquid crystal composed
of molecules that possess a large shape polarity as well as a large permanent
dipole moment parallel to their long dimension (Fig. 3.1 (a) ). There is no net
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polarisation in the uniform state because the molecules point randomly up or
down. On applying a splay or bend deformation, a polarisation is externally
induced. This arises because the geometry of packing now requires a bias in
the molecular orientations, and thus an imbalance in the number of dipoles
up and down. The converse effect is also possible. The required strains are
curvatures of the director field rather than bulk stresses and shear strains as
in crystals. The polarisation is given by

P = e1n(∇ · n) + e2n× (∇× n), (3.2)

where e1 and e2 are splay and bend flexoelectric coefficients respectively, P
is the polarisation, and n is the director. Fig. 3.1 (b) and (d) illustrates this
for both the splay and bend deformation of tear drop and banana shaped
molecules respectively.

Figure 3.1: Polar molecules with (a) teardrop shape and (c)
banana shape give rise to an external polarisation after impos-
ing a curvature strain (b), (d), [41].

The complex geometrical requirements mean that it is very difficult to
study in nematic materials. However the required alternating bands of splay
and bend can be produced in a cholesteric liquid crystal relatively easily by
rotating the director out of the plane perpendicular to the helix axis using an
electric field [42] as shown in Fig. 3.2.
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Figure 3.2: An electric field when applied to a cholesteric liquid
crystal results in a required director pattern for the flexoelec-
tric effect. The splay and bend pattern illustrated here would
be produced if an electric field was applied to a cholesteric,
parallel to the helical axis. After Meyer [41].

3.1.3 Piezoelectricity of cholesteric liquid crystal elastomers

A liquid crystal elastomer, unlike a liquid crystal, can support a static shear
stress. It can display a piezoelectric effect as a result of imposed strains like a
true crystal, rather than curvatures of the director field as in liquid crystals.
This is because of the coupling between the liquid crystal degrees of freedom
and the strain. An analysis of the symmetry properties of the free energy
of a cholesteric liquid crystal phase was presented in [43], including possible
couplings between the electric field, E, the gradients of the director, ∇n,
and the deformation tensor, λ. The results of this analysis indicate that the

allowed terms in the free energy are

Q1

(

E× n · λs · n
)

+Q2E · ω +Q3(E · n)(ω · n), (3.3)

where ω denotes the rotational component of the deformation and λs denotes

the symmetric part of the deformation. The first of these terms leads to the
incorrect conclusion that there should be a polarisation under a compression.
However, from the coarse grained approach of Pelcovits et al. [44] it can be
concluded that the first term is a result of the flexoelectric effect.

The symmetry argument presented by Pelcovits et al. was used to con-
struct the free energy in terms of the pitch axis around which the helix winds.
The free energy density of a cholesteric elastomers produces three terms cou-
pling the deformation to the electric field. The authors identify the three
terms that produce a polarisation which are in agreement with the results of
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[43] provided that the correct coarse graining procedure is applied there. The
first term of Eq. (3.3) is directly related to the flexoelectric effect because the
applied shear results in the director pattern depicted in Fig. 3.2. In this case
the mechanical deformation takes the place of the electric field. The other
two terms are connected with local rotations of the director. Although this
effect is regarded as a piezoelectric effect because it is induced by a mechan-
ical strain, its origins are as in Fig. 3.1, i.e. nothing intrinsically to do with
chirality, or the lack of a centre of symmetry. The predictions of this coarse
grained theory have been verified experimentally by Chang et al. by forming
a cholesteric elastomer between two glass plates coated with indium tin oxide
electrodes [45]. An oscillating shear field was then applied to the elastomer
which produces the director pattern required for the flexoelectric effect. The
resulting induced voltage from the piezoelectricity is measured. The experi-
mental results were fitted to the theory of [44] using separate characteristic
times for the polymer network and the director. Although it is possible to as-
sign a relaxation time to a particular polymer strand, for example the Rouse
time scale τR ∼ 10−5 − 10−6s, when the whole polymer network is considered
the relaxation follows a power law. Thus there is no characteristic time scale.
The director is expected to respond much more slowly τLC ∼ 10−2 − 10−3s.
The significance of the relaxation time of Chang et al. is thus questionable.
The characteristic time scale assigned to the polymer network, denoted by τp,
was τp = 5ms. This is much slower than the director response. The liquid
crystal molecules then follow the strain of the polymer network with a charac-
teristic time τLC = 0.3ms, which is in the region we expect. Thus the polymer
network responds more slowly than the director, so the director tends to sit
in its equilibrium orientation. This is contrary to the typical situation where
the polymer network relaxes very quickly and the director lags behind [46].

3.1.4 A chiral mechanism for piezoelectricity in liquid crystal
elastomers

Another mechanism for piezoelectricity in liquid crystal elastomers is the cou-
pling of chiral chain elements to the mechanical distortions of the elastomer
[47, 48]. This mechanism is truly piezoelectric in the sense that both a strain
and the absence of a centre of symmetry are required. It is now described,
and the derivation of the main results is outlined. The main chains considered
there consist of chiral units as illustrated in Fig. 3.3. Each monomer consists
of two arms that have different lengths. A third direction along which a dipole
could point is then assigned to each unit based on the same rule so that each
unit is, say, right handed. Only the long axis is affected by the nematic field.
This is the key to the mechanism of the polarisation. The axis of the nematic
field and the elastic axes are not parallel. A deformation could then be applied
to the rubber so that it causes all of the dipole axes to align. To achieve this,
a deformation that defines a direction is required. Of the simple deforma-
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u

va b

Figure 3.3: A single monomer of a chiral main chain polymer.
The monomer has two arms of different lengths a, and b. Each
monomer is then assigned a dipole using the right hand rule
(in this case out of the page) so that each one is chiral.

tions only simple shear defines a direction for the polarisation to point along.
The effect of a shear on a rubber consisting of nematic, chiral main chains is
illustrated in Fig. 3.4.

Figure 3.4: A shear deformation applied to a network of chiral
molecules (a) can cause an overall binormal vector (b) and
hence a polarisation to develop (schematic only).

The joint probability distribution of end-to-end distance of a long chiral
main chain, R, and the total binormal, V, is now calculated. The two di-
rections for the long and the short arms of each monomer can be defined as
u and v as shown in Fig. 3.3, so that the end-to-end distance of a monomer
is given by: wα = auα + bvα where α labels the monomer. The end-to-end
distance of the chain and the chain binormal are then given by

R =
∑

α

wα (3.4)

V =
∑

α

uα × vα (3.5)

Since the uα of each monomer is on average parallel or anti-parallel to the
nematic field (Q 6= 1) and each monomer is independent, then it has the
quadrupolar average

〈uαi uβj 〉u = δαβqij, (3.6)
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where the tensor order parameter is given by: qij = q⊥δij + (q‖ − q⊥)ninj.
If θ is the angle that a monomer makes with the nematic direction, n, then
q‖ = 〈cos2 θ〉 and q⊥ = 1

2 〈sin2 θ〉. Since v is perpendicular to u it has the
average

〈vαi vβj 〉vu = 1
2δαβ(δij − qij) =

1
2δαβMij (3.7)

These averages can be used to evaluate the joint probability distribution by
averaging over delta functions used to count the configurations. Exponenti-
ating these delta functions and expanding down from the resulting exponent
allows their evaluation. The result is

W (R,V) =

〈

δ

(

R−
∑

α

(auα + bvα)

)

δ

(

V −
∑

α

uα × vα

)〉

=

∫ ∫

dηdζ

(2π)6
exp(iη ·R+ iζ ·V)

×
〈

1− i

(

∑

α

η · (auα + bvα) + ζ · (uα × vα)

)

− 1
2 (· · ·)

2 + · · ·
〉

.

The first few averages of this expansion can be evaluated, ignoring terms

of order
(

b
a

)2
, and then re-exponentiate and using the method of steepest

descents to evaluate the integral. An iterative method can be used to solve
for the points of steepest descent. The most interesting term comes from the
cubic part. The resulting distribution function is

W (R,V) ∝ exp

( −3

2La
RT · ℓ−1 ·R− 1

N
VT ·M−1 ·V

)

×
(

1 +
3b

aL2

[

R× ℓ−1 ·R
]

·M−1 ·V +O(R4, R2V 2)

)

,

where ℓ = δ + (r − 1)nn ≈ 3q. This tensor provides information on the

anisotropy of the chain shape. The anisotropy of the chains is given by r =
l‖/l⊥. The important correction term is the coupling between R andV. Using
this probability distribution the average binormal, V, can be calculated.

〈V〉 ∝
∫

dVexp

(

− 1

N
VT ·M−1 ·V

)

V

(

1 +
3b

aL2

[

R× ℓ−1 ·R
]

·M−1 ·V
)

=
3bN

2aL2
R× ℓ−1 ·R,

where clearly in the
∫

dV the first (linear) term gives zero, so the O(V2) terms
must be evaluated. In a rubber the polymer chains will have their ends fixed.
It is assumed that deformations move these ends affinely. If the quenched-in
end-to-end vector is denoted by R0 then after a deformation, λ, the end-to-

end distance becomes R = λ · R0. The quenched-in binormal vector, after
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averaging over formation conditions, is given by

〈V〉R0 ∝
∫

dR0exp

(

− 3

2La
RT

0 · ℓ−1
0 ·R0

)(

3bN

2aL2

(

λ ·R0

)

× ℓ−1 ·
(

λ ·R0

)

)

=
b

2a

[

λT × ℓ−1 · λ · ℓ0
]

This resulting binormal can now be summed over all the network strands,
ns per unit volume. After weighting each elementary binormal vector by the
dipole moment d that it carries, the resulting expression for the polarisation
is

Pi = nsd〈Vi〉R0 = 1
2nsd(b/a)ǫijk(λ · ℓ0 · λT · ℓ−1)jk, (3.8)

where Pi is the component of the polarisation in the i direction and ns is
the number of strands per unit volume. To evaluate this expression after the
rubber has been deformed, the new equilibrium orientation of the director
must be calculated. This is explored in the next section.

3.2 Equilibrium orientation of the director

The free energy density of a liquid crystal elastomer is given by

f = 1
2µλijℓ0jkλ

T
klℓ

−1
li . (3.9)

Given the initial director orientation and the applied deformation, the equi-
librium orientation of the director can be calculated after the deformation has
been applied by minimising the free energy density with respect to the direc-
tor n whilst keeping its magnitude fixed via a Lagrange multiplier, χ. Thus
the following quantity should be minimised w.r.t. n

g = µ1
2

(

λijℓ0jkλ
T
klℓ

−1
li + χ [1− nini]

)

(3.10)

Note that when the constraint is satisfied g and f are equal. On differentiation
with respect to nα the result is

∂g

∂nα
= 1

2µ
(

1
r − 1

) (

niλijℓ0jkλ
T
kα + λαjℓ0jkλ

T
klnl

)

− µχδiαni

The stationary points in the free energy density occur when n obeys the
condition

(

1

r
− 1

)

M · n = χn (3.11)

χ =

(

1

r
− 1

)

niλikℓ0kjλ
T
jαnα (3.12)

where Miα = λijℓ0jkλ
T
kα. This equation provides a useful general way of de-

termining the final orientation of the director at equilibrium. From Eq. (3.11),
n is a principal axis ofM. The free energy will be stationary when the director

is aligned with any one of the three principal axes of M.
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3.2.1 Nature of the stationary points

The free energy density minimum corresponds to putting the director n along
the principal axis of M with largest principal value when r > 1 and along

the principal axis with smallest principal value when r < 1. This follows from
writing the free energy density as

f = 1
2µ
[

1
rm1 +m2 +m3

]

, (3.13)

where m1, m2 and m3 are the principal values of the M tensor and 1, 1 and

1
r are the principal values of the ℓ−1 tensor. For r > 1 then m1 must be the

largest principal value for the free energy density to be minimal. Similarly
for r < 1 then m1 must be the smallest principal value for the free energy
density to be minimal. The stability of aligning the director n with each of
the principal axes of M can be analysed by looking at the derivatives of the

free energy density

∂g

∂n
=

1

2
µ

[(

1

r
− 1

)

(

n.M+M.n
)

− 2χkn

]

∂2g

∂n2
=

1

2
µ

[(

1

r
− 1

)

2M− 2χkδ

]

where the label k corresponds to the principal axis under consideration. The
principal values of the second derivative matrix will dictate the stability of
the direction nk. If all the principal values are positive then the point is
a minimum, if they are all negative then the point is a maximum, and no
conclusion can be drawn if they are neither all positive nor all negative. In
the principal frame it is clear that for r < 1 all the χk are positive. In this
frame the matrix

(

1
r − 1

)

M has only diagonal entries of χ1, χ2 and χ3. If

the χk are non-degenerate then the second derivative matrix has the following
properties:

• Two negative principal values and one zero when k corresponds to the
largest χ value.

• One positive, one zero and one negative principal value when k corre-
sponds to the middle χ value.

• Two positive principal values and one zero when k corresponds to the
smallest χ value.

Note that there is always one zero in the tensor because fluctuations along
the director do not keep the director of length unity. When r > 1 all the χ
acquire a minus sign so the behaviour of the stationary points swap. Thus the
stable axis swaps from the axis with the smallest m principal value to that
with the largestm principal value. The system has one stable axis along which
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the director lies, one saddle point, and one unstable axis. When considering
a soft mode, then two of the principal values are degenerate. In this case
it still follows that the axis along which the director lies is stable, but the
other two axes have degenerate values of χ and so will have two zeros in the
matrix determining their stability, which cannot be classified as a maximum
or a minimum.

3.3 The polarisation of a pure liquid crystal
elastomers

Once the equilibrium orientation of the director is known, the polarisation of
the elastomer can be calculated. The tensor M commutes with the tensor

ℓ−1 because the director lies along one of the principal axes of M. The object

M· ℓ−1 is thus symmetric and as a result the polarisation of the elastomer is

zero since it is the contraction of this symmetric tensor with the antisymmet-
ric tensor ǫijk. Two more arguments that produce the same result are now
presented.

3.3.1 Linearization of the polarisation expression

It is useful to look at small, symmetric deformations and rotations of the
rubber matrix in which the rods are held. The deformation tensor can be
broken up into the sum of the Kronecker delta, a symmetric tensor, ǫij, and
an antisymmetric tensorWij. The antisymmetric tensor has the property that

W · a = Ω× a. (3.14)

This matrix performs rotations about the axis Ω̂ of magnitude Ω for small
rotations. It is convenient to rewrite the antisymmetric tensor in terms of its
axial vector, Ω

Wij = ǫikjΩk. (3.15)

The strain tensor then becomes

λij = δij + ǫij + ǫikjΩk, (3.16)

where ǫ is a symmetric second rank tensor and Ω is a vector parallel to the

rotation axis and has a magnitude equal to the angle of rotation, Ω. There
should be no confusion between the Levi-Civita symbol, ǫijk, and the sym-
metric tensor ǫij here because of the number of indices. This decomposition
can be used in the expressions for free energy and polarisation (dropping the
prefactors in both cases for simplicity)

f = Tr
[

ℓ0 · ℓ−1 + ℓ0 · ǫ · ℓ−1 + ǫ · ℓ0 · ℓ−1 + ǫ · ℓ0 · ǫ · ℓ−1
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− ℓ0 ·W · ℓ−1 +W · ℓ0 · ℓ−1 −W · ℓ0 ·W · ℓ−1

+ W · ℓ0 · ǫ · ℓ−1 − ǫ · ℓ0 ·W · ℓ−1
]

(3.17)

Pi = ǫijk

[

ℓ0 · ℓ−1 + ℓ0 · ǫ · ℓ−1 + ǫ · ℓ0 · ℓ−1 + ǫ · ℓ0 · ǫ · ℓ−1

− ℓ0 ·W · ℓ−1 +W · ℓ0 · ℓ−1 −W · ℓ0 ·W · ℓ−1

+ W · ℓ0 · ǫ · ℓ−1 − ǫ · ℓ0 ·W · ℓ−1
]

jk
. (3.18)

[Note that the linear terms in ǫ cancel out due to the identity: (r − 1) +
(

1
r − 1

)

+ (r − 1)
(

1
r − 1

)

= 0]. Suppose now that Ω and ǫ are small so that

second order effects in these quantities may be neglected. The resulting free
energy density and polarisation are

f ≈ Tr
[

ℓ0 · ℓ−1 + ℓ0 · ǫ · ℓ−1 + ǫ · ℓ0 · ℓ−1

− ℓ0 ·W · ℓ−1 +W · ℓ0 · ℓ−1
]

(3.19)

Pi ≈ ǫijk

[

ℓ0 · ℓ−1 + ℓ0 · ǫ · ℓ−1 + ǫ · ℓ0 · ℓ−1

− ℓ0 ·W · ℓ−1 +W · ℓ0 · ℓ−1
]

jk
. (3.20)

To show that the first order shift in the director cancels out the polarisation,
consider minimisation of the free energy density with respect to variations in
the order parameter that maintain the normalisation of the director n ·n = 1.
Differentiation of the free energy density expression above, Eq. (3.19), w.r.t.
n and using a Lagrange multiplier, χ, to maintain the constraint results in

ℓ0 · n+ (ℓ0 · ǫ+ ǫ · ℓ0) · n+ (W · ℓ0 − ℓ0 ·W ) · n = χn (3.21)

Perturbation theory can be used to calculate the shift in the principal axis (i.e.
the director n) to first order. If ǫ and W are small then the terms containing

them on the left had side of Eq. (3.21) can be written as a perturbation
ℓ′ = (ℓ0 ·ǫ+ǫ·ℓ0)+(W ·ℓ0−ℓ0 ·W ) with a parameter ξ to control the “strength”

of the perturbation and keep track of its order. Using this substitution and
writing χ = r + ξr(1) + . . . and similarly for n results in

(ℓ0 + ξℓ′)(n0 + ξδn(1) + . . .) = (r + ξr(1) + . . .)(n0 + ξδn(1) + . . .).(3.22)

Collecting powers of ξ produces the following for the 0th and the 1st order
shifts

ℓ0 · n0 = rn0 (3.23)

ℓ0 · δn(1) + ℓ′ · n0 = rδn(1) + r(1)n0 (3.24)
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The first of these is recognisable from the definition of ℓ0. Using the fact

that the first order shift in the principal axis is orthogonal to n0 produces the
following

r(1) = n0 · ℓ′ · n0 (3.25)

δn(1) =
ℓ′ · n0 − (n0 · ℓ′ · n0)n0

(r − 1)
. (3.26)

When this first order shift is substituted into the polarisation expression the
following result is obtained

Pi ≈ ǫijk

[ (

ℓ0 + ℓ′
)

· ℓ−1
]

jk

= ǫijk

[(

δ + (r − 1)n0n0 + ℓ′
)

·
(

δ +
(

1
r+r(1)

− 1
)

(n0 + δn) (n0 + δn)
)]

jk

≈
(

1
r − 1

)

ǫijk

[

ℓ′ · n0n0 + (r − 1)n0δn
]

jk

=
(

1
r − 1

)

ǫijk

[

ℓ′ · n0n0 + n0

(

ℓ′ · n0 − (n0 · ℓ′ · n0)n0

) ]

jk
(3.27)

Where use has been made of the fact that ℓ′ is symmetric. The last term here

vanishes by symmetry and the remaining two terms cancel out on interchange
of the suffixes j and k due to the total antisymmetry of the Levi-Civita sym-
bol. Thus it is clear that the rotation of the director means that there is no
polarisation in equilibrium for a pure (i.e. not semi-soft) chiral elastomer.

3.3.2 Vector properties from quadrupoles

A more general argument as to why there is no polarisation can also be con-
structed. Consider two quadrupolar objects represented by the vectors k and
n. A pseudo-vector can be made out of these two quadrupolar objects as
follows

p = α(n · k)(n× k). (3.28)

Note that even powers of the two vectors are required by their quadrupolar
symmetry. It is clear from this object that if a pseudo-vector can be defined
from the quadrupolar objects then the quadrupolar objects must not be either
parallel or orthogonal to each other.

The specific case of a piezoelectric response of a liquid crystalline elastomer
is now considered. In this case the two quadrupolar objects are: the liquid
crystal order, as specified by the director n and a quadrupolar object defined
by the elastic deformation we apply, M. To develop a polarisation the axes

of these two objects must not be orthogonal. On minimising the free energy
density it is found that the director must sit along a principal axis of the
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quadrupolar object M. Hence the two quadrupolar objects are always either

parallel or orthogonal to one another so there can never be any polarisation.
From the analysis of the symmetry properties of the chiral elastomer it is

clear that there is no underlying reason that prevents the system developing a
polarisation. The coupling between the different elements in the energy of the
elastomer prevents any polarisation developing. Two more detailed models of
elastomers are now considered, together with their effect on this mechanism
of polarisation.

3.3.3 Random mixture of anisotropies

In the preceding sections the relaxation of the director and the remaining
strain variables when a strain is imposed was shown to relax away the po-
larisation, P in an ideal system. Semi-softness is one non-ideality and the
possibility of a residual polarisation P in a system where the optimal director
orientation cannot be attained is now considered.

One route to a semi-soft elastomer is to include a mixture of polymer
chains that do not all have the same anisotropy tensor. The anisotropy tensor
for a given chain is denoted by ℓ(ν), and the anisotropy by r(ν). The free

energy density is then calculated by averaging over all the different anisotropy
tensors of chains. The result of this averaging is given by the expression

2fSS
µ

= Tr
[

λ · ℓ0 · λT · ℓ−1
]

+ αTr
[

δ(tr) · λT · nn · λ
]

, (3.29)

where it is understood that it is the average of r values that occur in the chain

shape anisotropy tensors, ℓ. The constant α is given by: α =
(

〈1r 〉 − 1
〈r〉

)

, and

δ(tr) = δ − n0n0. The value of 〈r〉 dictates the way that the system responds

to a deformation. If 〈r〉 > 1 then the director responds in the same way as a
prolate system, aligning along the extensional axis. If 〈r〉 < 1 then the system
responds in the same way as an oblate system, i.e. along the compressional
axis. When 〈r〉 = 1 then the system must consist of mixture of oblate and
prolate chains. The competition between the rotation to the compressional
axis of one chain type and the extensional axis for the other type completely
cancel out.

Assuming that all the polymer chains in the system are chiral and hence
polarisable, then the polarisation is also to be averaged over all the different
chains and similar result for the polarisation formula is obtained

Pi =
1

2
nsd(b/a)ǫijk(λ · ℓ0 · λT · ℓ−1 + αλ · δ(tr) · λT · nn)jk (3.30)

The analysis of §3.2 can be performed on this formula by minimising the free
energy density fSS with the constraint n · n = 1. This results in the equation

(

1

r
− 1

)

λ · (ℓ0 + βδ(tr)) · λTn = χn, (3.31)
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where

β =
αr

1− r
(3.32)

χ =

(

1

r
− 1

)

n · λ · (ℓ0 + βδ(tr)) · λT · n. (3.33)

Eq. (3.31) can then be substituted back in to the expression for the polarisa-
tion. The result of this yields

Pi =
1

2
nsd(b/a)

(

1

r
− 1

)

ǫijk(λ · (ℓ0 + βδ(tr)) · λT · nn)jk (3.34)

This is zero because n is a principal axis of the tensor λ · (ℓ0 + βδ(tr)) · λT , so
it is a contraction of an antisymmetric tensor with a symmetric tensor.

3.3.4 Rod cross-linkers introducing semi-softness

Typically, elastomers are aligned by a two-stage cross-linking process resulting
in a monodomain. A model of this multistage cross-linking process [49] shows
that Gaussian chains do not remember the details of the strains imposed dur-
ing the cross-linking process, indeed a multistage cross-linked network should
exhibit the same behaviour as a single-stage system. This extended the ideas
of Scanlan [50] into nematic elastomers. The process of multistage cross-
linking may allow some extra orientational information to be imprinted into
the elastomer. A model of this process presented in [51] is now summarised,
where the second stage is carried out using rod cross-linkers. The polarisation
of the rubber within this model with this second stage of cross-linking will
subsequently be calculated.

Two-stage cross-linking

Consider two separate strands of n monomers that have already been cross-
linked into a matrix. These strands are then cross-linked together as shown in
Fig. 3.5. Initially the polymer chain was cross-linked with its ends at r0 and
rn. The rod cross-linker is joined to this original chain at the jth monomer
down its length. If we denote the position of the jth monomer by rj , and the
distance from the end to the jth monomer as: rj0 = rj − r0, then the free
energy of the strand with its new cross-linking point can be written as the
sum of the two Gaussian strands

f

kBT
=

3

2a2





rTj0 · ℓ−1 · rj0
j

+
rTnj · ℓ−1 · rnj

n− j



 . (3.35)
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Figure 3.5: A rod like cross-linker is used in the second stage
of the cross-linking to join together two of the strands. Here
gn is the span of the polymer chain from the cross-linker to
the first stage cross-link, an is the span from the centre of the
cross-link to the first stage cross-link, z is the vector from the
span between the two first stage cross-link points to the new
cross-linked point, x is the position of the rod cross link, c is
the director of the rod cross-link and 2t is the length of the
rod cross-link.

The strand free energy can be re-expressed in terms of z (see Fig. 3.5) by
substituting in z using the definitions

z = rj0 −
j

n
rn0

z =
n− j

n
rn0 − rnj.

The strand free energy is then given by

f

kBT
=

3

2a2





n

j(n− j)
zT · ℓ−1 · z+

rTn0 · ℓ−1 · rn0
n



 . (3.36)

The two parts of this free energy can be recognised as the cost of localising the
strand and that of the strand alone. The deformation of the network can be
defined as follows: the total network deformation since its genesis is given by
λ, the network deformation from its genesis to the first stage of cross linking

is given by λf . A superscript f will be used to denote vector quantities at

the second stage of cross-linking, whilst a superscript o will be used to denote
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vector quantities at the first stage of cross-linking. The fact that an and rn0
deform affinely can be used to express z as follows

z = λ · λ−1
f zf − tλ · λ−1

f cf + tc. (3.37)

This expression can then be substituted into the expression for the free energy
and the variables rn0, z

f , and cf quench-averaged over, whilst annealing over
c. The required averages of the distribution are denoted as follows

〈zfzf 〉 =
1

3
j(n− j)

a2

n
ℓf (3.38)

〈ron0ron0〉 =
1

3
na2ℓ0 (3.39)

〈cfcf 〉 =
1

3
Cf . (3.40)

These averages are used to evaluate the expression

fel
kBT

= −
∫

dcfP (cf )

∫

drn0P (rn0)

∫

dzfP (zf ) ln

[∫

dce
− F

kBT

]

. (3.41)

Since the rigid-rod cross-link is short compared to the span of a Gaussian
chain then the small elastic contribution of the rigid rod to the free energy is
neglected. Terms linear in cf average to zero, terms in c and cf are small, and
terms in c and zf are expanded down from the exponential and then averaged
over w.r.t c and the resulting logarithmic term expanded.

After evaluating these integrals the second stage of the cross-linking occurs
at a random point along the polymer chain, and consequently the randomly
chosen j is averaged over. The expression for the free energy density obtained
is given by

fel =
1

2
nskBT

(

Tr
[

λ · A · λT · ℓ−1
]

− Tr
[

λ ·B · λT · ℓ∗−1
])

ℓ∗ = ℓ · C−1 · ℓ

A = (1− α)ℓ0 + αλ−1
f · ℓf · λ−T

f + αdλ−1
f · Cf · λ−T

f

B = αdλ−1
f · ℓf · λ−T

f

Here α = nrigid/(n1 + nrigid) where nrigid is the number density of second
stage cross-links and n1 is the number density of first stage cross-links. Thus
α is the fraction of second stage cross-links. The constant d arises from av-
eraging over the position j that the rod linker is bonded, and is given by
d =

[

2 ln(n− 1)t2
]

/
[

(n− 1)a2
]

. After this second stage of cross-linking, the
rubber then relaxes to the optimal deformation. The total relaxation of the
rubber from its first cross-linking state to its current relaxed state is denoted
by λr. This relaxation is chosen so as to minimise the free energy density.
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After this relaxation, a further deformation on the rubber can be imposed,
which corresponds to the deformation applied experimentally after the second
stage cross-linking process. A prime (′) is now used to denote quantities such
as X ′ = λr ·X · λTr . The imposed deformation after the relaxation is denoted

by λ. The final formula for the free energy density is thus

fel =
1

2
nskBT

(

Tr
[

λ · A′ · λT · ℓ−1
]

− Tr
[

λ ·B′ · λT · ℓ∗−1
])

(3.42)

Polarisation of two-stage cross-linked material

The polarisation of an elastomer composed of chiral main chains after a two
stage cross-linking process is now calculated. The polymer chains have chiral
monomers that carry a dipole moment, but the rod cross-linkers carry no
dipole moment. The average binormal vector can be calculated as shown in
§3.1.4. The original strand is split into two strands after the rod cross-linker
is attached to the polymer chain. The end-to-end vector of these two strands
is denoted by go and gn as shown in Fig. 3.6. The total total binormal vector

gg
0 n

Figure 3.6: The two end-to-end vectors of the polymer chain
after it has been cross-linked to the rod.

for each strand can then be calculated using

〈V〉 = 3bN

2aL2

〈

g × ℓ−1 × g
〉

(3.43)

This average can be calculated by first substituting for g in terms of z and
rn0

g0 +
j

n
rn0 + z = 0

gn −
(

1− j

n

)

rn0 + z = 0
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These two quantities can be related to the quantities at the second cross-link
stage as follows

g0 = − j

n
λ · λ−1

f · rfn0 − λ · λ−1
f · zf + tλ · λ−1

f cf − tc

gn =
n− j

n
λ · λ−1

f · rfn0 − λ · λ−1
f · zf + tλ · λ−1

f cf − tc

The binormal average for the two strands g0 and gn can be evaluated by
substituting these expressions into the formula for the binormal vector. The
average is slightly simpler than that of the free energy density because no
annealed terms have to be expanded. Note that zf and rf are un-correlated;
also c · (−) · c terms are ignored as are c · (−) · zf , cf · (−) · c and cf · (−) · rn0.
After using these averages the following expressions for the binormals of each
strand are obtained

〈Vg0〉f =
b

2a
ǫijk

[

j

n
λ · ℓ0 · λT · ℓ−1 +

n− j

n
λ ·
(

λ−1
f · ℓf · λ−T

f

)

· λT · ℓ−1

+
t2

ja2
λ · λ−1

f · Cf · λ−T
f · λT · ℓ−1

]

〈Vgn〉f =
b

2a
ǫijk

[

n− j

n
λ · ℓ0 · λT · ℓ−1 +

j

n
λ ·
(

λ−1
f · ℓf · λ−T

f

)

· λT · ℓ−1

+
t2

(n− j)a2
λ · λ−1

f · Cf · λ−T
f · λT · ℓ−1

]

.

Summing the contributions from each chain and then average over the posi-
tion, j, to which the rod molecule is bonded, with equal probability for each
site, and summing the result over all strands results in the following expression

Pi =
nsd(b/a)

2
ǫijk

[

λ ·A′ · λT · ℓ−1
]

(3.44)

This is a polarisation formula but with a different matrix compared to the free
energy density. The minimum of the free energy density can be found as in
§3.2, assuming that ℓ∗ has the same principal axes as ℓ. This follows because

C and ℓ have the same principal axes as a result of being in the same nematic

environment. In order to develop a polarisation it is required that A′ and

B′ have different principal axes. However, this cannot be the case because

the anisotropy tensor ℓf is related to the original anisotropy tensor by the

conventional trace formula so ℓo and λ−1
f · ℓf · λ−T

f have the same principal

axes and hence A′ and B′ have the same principal axes. As a result the trace

formula is still the contraction of a symmetric with an antisymmetric tensor
and so again the polarisation is zero.
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3.4 Systems where a polarisation results

3.4.1 Oscillating shear

The dynamics of liquid crystal elastomers are complicated because of the
coupling between the liquid crystalline degrees of freedom and the underlying
polymer matrix. As stated already, it is possible to identify several time scales
in the elastomer. A single free polymer strand has an associated relaxation
time called the Rouse time τp ∼ 10−4−10−6s, and the mesogenic units have an
associated relaxation time τLC ∼ 10−1− 10−2s. However the polymer network
as a whole relaxes according to a power law and so has no associated scale.
The polarisation associated with the dynamics of a liquid crystal elastomer is
now calculated under the assumption that the polymer network responds very
quickly and then the director relaxes much more slowly into its equilibrium
orientation. For an elastomer that displays such a separation of time scales the
relaxation of the polymer can be neglected (it is assumed to be instantaneous)
and the slower dynamics of the director focused upon [52]. In this case the
system can be modelled as an over-damped oscillator with a damping constant
γ associated with the return to equilibrium of the director. The force causing
the return to equilibrium is governed by the gradient of the equilibrium free
energy density

γṅ = −∂(f − χn · n)
∂n

, (3.45)

where the Lagrange multiplier has again been included to prevent changing
of the length of the director during the motion. Using the the small deforma-
tion form for the free energy density given previously and then applying the
constraint n ·n = 1 to find χ as before, then in the notation of section §3.3.1,
the resulting equation is

γṅ = −µ
(

1
r − 1

)

(

(ℓ0 + ℓ′) · n− n(n · (ℓ0 + ℓ′) · n)
)

(3.46)

To pick out the symmetric and antisymmetric contributions to this expression
consider a deformation of the form

λ =





1 0 η + δ
0 1 0

η − δ 0 1



 . (3.47)

On substituting this deformation into Eq. (3.46) the following expression for
the angle of the director is obtained

γθ̇ = µ

(

1− r

r

)

(((r − 1)δ − (r + 1)η) cos 2θ + (r − 1) sin 2θ) (3.48)

= −D1 sin 2θ − (2D1δ(t) +D2η(t)) cos 2θ, (3.49)
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where de Gennes elastic constants D1 = µ
2r (1 − r)2 and D2 = µ

r (1 − r2)
[33] have been substituted in. Note the separation of the symmetric and the
antisymmetric parts together with the appropriate de Gennes elastic constant.

For the case of an oscillating λxz component

λ =





1 0 ǫ
0 1 0
0 0 1



 , (3.50)

the resulting perturbation can be calculated by breaking up the above λ into

its symmetric and antisymmetric parts, and then using the expression for ℓ′.

The result is

ℓ′ =





0 0 ǫr
0 0 0
ǫr 0 0



 . (3.51)

The initial orientation of the director is n0 = (0, 0, 1) and the current director
orientation can be written as n = (sin θ, 0, cos θ), then all the components of
the equation of motion reduce to

γθ̇ = −D1 sin 2θ −
(

D2
2 −D1

)

ǫ(t) cos 2θ (3.52)

where the de Gennes elastic constants have again been substituted in. For
small oscillations this reduces to a linear, driven, over-damped oscillator equa-
tion. The driving deformation is assumed to be ǫ(t) = ǫeiωt. The amplitude
in complex notation is then

A(ω) =

ǫ
2

(

1− D2
2D1

)

1 + iωτc
, (3.53)

where τc = γ
2D1

. The polarisation of the liquid crystal elastomer can be
calculated by using the orientation of the director and Eq. (3.8). Although
this formula is derived entirely from equilibrium statistical mechanics, it is
used here for a system that is considered locally close to equilibrium at each
stage of its relaxation

Py = 1
2nsd(b/a)

(

(r − 1)ǫeiωt − (r−1)2

r A(ω)eiωt
)

. (3.54)

Denoting P∞ = 1
2nsd(b/a)(r − 1)ǫ (the ∞ denoting the large frequency re-

sponse) and use the explicit forms above for D1 and D2, then this simplifies
to

Py = P∞
iωτc

1 + iωτc
eiωt. (3.55)

The amplitude of this response is given by
∣

∣

∣

∣

Py

P∞

∣

∣

∣

∣

=
ωτc

√

1 + (ωτc)2
. (3.56)
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Figure 3.7: The polarisation of a chiral liquid crystal elastomer
under an oscillating shear.

The response of the polarisation is illustrated in Fig. 3.7. The maximum size
of the response is given by P∞. The size of the maximum polarisation can
be calculated by using the following estimates: ns ∼ 1026m−3, d ∼ 10−30Cm,
b
a ∼ 1

10 , r ∼ 50 and ǫ ∼ 10%. From these estimates the value: P∞ ∼
25× 10−6Cm−2 is obtained. Note that this method only yields a polarisation
when the relaxation time for the director is slower than the response time of
the polymer network. As a result it provides a probe of the response times of
the network and the director.

3.4.2 Smectic anchoring

The molecules that a smectic liquid crystal is made up of experience short
range interactions that causes them to condense into layers. This can be mod-
elled using a similar method to Maier-Saupe theory of nematic liquid crystals
[53], using a mean field theory. In a smectic-A phase the director is anchored
perpendicular to the layers (chapter 4). Similarly in a smectic liquid crystal
elastomers the director can be treated as rigidly anchored perpendicular to the
smectic layers, in the first approximation. As a result of the layer anchoring,
when the polarisation of a chiral main chain elastomer is calculated, then a
polarisation is obtained because the director cannot rotate without reducing
the layer spacing. To illustrate this we now calculate the polarisation of a
smectic-A∗ elastomer that has its director aligned along the z-axis and a λxz
shear imposed on it (Fig. 3.8 (a)). The polarisation can be calculated in this
case simply by substituting the following deformation into the polarisation
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a)

b)

x

z

Figure 3.8: (a) A λxz shear applied to a smectic liquid crystal
elastomer. (b) A schematic sketch of the microscopic structure
of the main chain smectic elastomer before shearing the layers.

formula with the initial and final director fixed parallel to the z-axis

λ =





1 0 λ
0 1 0
0 0 1



 . (3.57)

The resulting polarisation is in the y direction and is given by

P = 1
2nsd

b
a(1− r)λŷ (3.58)

This expression is similar to that obtained for the case of an oscillating shear
applied to a nematic and thus has a similar size.

3.4.3 Binary Mixtures

Consider a binary mixture of polymer chains of different shape anisotropies,
r1 and r2. The elastomer has two different chain shape tensors that respond
differently to the imposed deformation but are coupled by the nematic field.
Since the system contains a mix of two components then the principal axes
of the tensor along which the director lies to minimise the free energy den-
sity are different to the principal axes for each of the pure components. As
a result, if one of the two components is made out of chiral chains that are
polarisable, then the system has a polarisation because of the equilibrium ori-
entation adopted by the chiral chains. Although this is a complicated system
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to synthesise, similar systems have already been synthesised. For example,
mixtures of main chain cross-linker elements with side chain polymers. The
introduction of an extra component means that the reorientation of the direc-
tor as the system deforms can be controlled. Mixtures of chains have already
been studied in the context of liquid crystal elastomers as a source of semi-
softness. The starting point used here is the free energy density of a mixture of
polymer chains as shown in section §3.3.3. The effect of the binary mixture on
the orientation can be calculated from this formula. Once the orientation of
the director is known, then the polarisation can be calculated from the model
of the polarisation discussed earlier. Two cases are considered here: a shear
with, and a shear without relaxation of the other deformation tensor compo-
nents. In each case a mixture of prolate side chains and main chains is used
as an illustration. Whilst it is possible to mix oblate and prolate chains in
principle, in practise the formation of an aligned monodomain is not possible
by the typical method of stretching the sample and then using a second cross-
linking stage. The oblate and prolate chains respond by rotating in opposite
directions to each other and so would not become aligned.

Shear with relaxation of deformation

A λxz shear is imposed on a block of rubber. To find a soft mode we allow
the λxx and λzz deformations to relax. The third diagonal component λyy is
unchanged during the rotation of the director, but once softness is finished
it starts to shrink. An illustration of the deformation and the accompanying
relaxations is shown in Fig. 3.9. To determine the trajectory of the director the

λ

λ

λ xx

zz

xz

Figure 3.9: The imposed xz shear is accompanied by relax-
ations in the x and z directions so that the overall deformation
is soft.

free energy density expression should be minimised. The deformation tensor
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is

λ =





λxx 0 δ
0 1

λzzλxx
0

0 0 λzz



 (3.59)

where λxz is denoted simply by δ and volume constraint has been included.
The λxz component has been suppressed on geometric grounds, since a λzx
deformation is being applied by plates attached to the sample. The free energy
density of the mixture of chains is given by

fss =
1
2µTr

[

λ · ℓ0 · λT · ℓ−1 + αδ(tr) · λT · nn · λ
]

, (3.60)

where as usual α = 〈1r 〉 − 1
〈r〉 and the ℓ0 and ℓ−1 are in terms of 〈r〉. The

average value for the binary mixture of chains considered here is given by:
〈r〉 = qr1 + (1 − q)r2, where q is the fraction of main chains of anisotropy r1
and 1− q is the fraction of side chains of anisotropy r2. On substituting into
this formula the director orientations n0 = (0, 0, 1) and n = (sin θ, 0, cos θ),
then the following expression for the free energy density is obtained

2fss
µ

=
1

λ2xxλ
2
zz

+ λ2zz(1 + (r − 1) sin2 θ) + (rδ2 + λ2xx)

(

1 +

(

1

r
− 1

)

sin2 θ

)

− (r − 1)λ2zzδ sin 2θ + αλ2xx sin
2 θ (3.61)

This free energy density is very similar to the case where the driving defor-
mation is a stretch along the x axis and a shear is induced as a result of the
rotation of the director. As a result it is possible to re-express some of the
results for the imposed stretch case to apply here. For the case where there is
no semi-softness the following solution is obtained

λ2xx = 1
2

{

(r + 1− δ2r)−
√

(r + 1− δ2r)2 − 4r
}

(3.62)

λyy = 1 (3.63)

λzz = 1/λxx (3.64)

sin2 θ =
r

r − 1

λ2xx − 1

λ2xx
. (3.65)

This is the solution up to the end of softness which occurs at δcr = 1 − 1√
r
.

After this point, minimisation of the free energy density becomes very difficult
analytically. The solution also becomes rapidly intractable when we have a
finite value of α. To calculate the size of the polarisation in these cases a
numerical procedure was used to minimise the free energy density. A simplex
algorithm provides a convenient and robust method for minimisation of the
free energy density. Fig. 3.10 shows a plot of the relaxation of λxx, λyy and
λzz for an elastomer consisting of only one type of chain, and for an elastomer
made of a mixture of two sorts of chains. Note that the pure elastomers, α = 0
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exhibit softness, with an abrupt end to the relaxation once all the chains have
rotated, whereas the semi-soft system has no such abrupt end because there is
no deformation that can be soft for all the chains. As an example, a mixture of
side chains with r = 2 and main chains with r = 50 is used. The angle of the
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Figure 3.10: The figure shows a plot of the relaxation of the
deformation as a function of applied shear, δ. The different
curves correspond to different mixtures of the main chain (r =
50) and side chain (r = 2) polymers. The fraction of main
chain is denoted by q.

director to the z-axis is shown in Fig. 3.11. This figure shows that the director
singularity for the two pure cases occurs at the critical value δcr = 1 − 1√

r
.

Fig. 3.11 also shows that the director behaviour in the sample is dominated
by the long chains; after q ∼ 0.1. After this the director behaviour tends to
follow the behaviour of the main chain system.

Polarisation

In the elastomer made of the mixed side chains and chiral main chains, each
of the main chains can be polarised according to the model of [48]. The side
chains will enable control of the rotation of the director. The polarisation of
the system is then given by

Pi =
1
2qnsd

(

b
a

)

ǫijk

(

λ · ℓ0 · λT · ℓ−1
)

jk
, (3.66)

where an extra factor of q, the fraction of polarisable main chains in the
system, has been inserted as compared to [48] which was for a pure system.
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Figure 3.11: The figure shows a plot of the angle of the di-
rector to the z direction as a function of the applied shear, δ
during the soft deformation. The different curves correspond
to different mixtures of the main chain and side chain poly-
mers. The fraction of main chain is denoted by q. The r values
are as in Fig. 3.10.

As in §3.1.4, b and a give the dimensions of the chiral units, d is the dipole
moment of each monomer and ns is the density of cross-linked strand in the
network. The anisotropy tensors used here refer to the anisotropy of the
chiral chains only because these chains are polarisable. However, because of
the mixed-in side chains, the final director orientation is not solely determined
by the polarisable main chains. For the deformation tensor of Eq. (3.59) the
polarisation expression of Eq. (3.66) reduces to

Py = −1
2qnsd

(

b
a

)

r1−1
2r1

(

−2r1λzzδ cos 2θ − (λ2xx + r1(δ
2 − λzz) sin 2θ

)

) (3.67)

Using the orientation of the director determined above, the polarisation of
the system can be calculated. A plot of the polarisation in the y direction in
units of 1

2qnsd
(

b
a

)

is shown in Fig. 3.12. The polarisation shows a minimum
typically at around λ ≈ 1. To understand this consider the q = 1 curve of the
angle of the director. This is the trajectory that the director should follow for
the polarisation to be zero, with the particular form of δ. The further away
from this trajectory the director is, then the larger the polarisation (Fig. 3.11).
For very large shears the director orientation tends to be independent of the
anisotropy of the chains so the polarisation goes to zero. Also for small shears
the difference between the soft trajectory and the semi-soft trajectories is small
so the polarisation is small.
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Figure 3.12: The figure shows a plot of the polarisation as a
function of the applied shear, λ during the soft deformation.
Py is in units of 1

2ns
b
ad. The different curves correspond to

different mixtures of the main chain and side chain polymers.
The fraction of main chain is denoted by q.

Shear without relaxation of deformation

In practise it is more realistic to prohibit any relaxation of the system. This
is because to impose the shear the sample will have to be glued to two plates
and then the plates sheared. In this case the deformation tensor is given by

λ =





1 0 λ
0 1 0
0 0 1



 (3.68)

This can be substituted directly into the free energy density, which can then be
minimised w.r.t. the director orientation to calculate the angle of the director
to the z axis, θ. In this case the instabilities reported in [54] are expected.
The orientation of the director is given by

tan 2θ = − 2〈r〉λ
1 + 〈r〉(λ2 − 1) + α〈r〉

1−〈r〉
. (3.69)

Plots of this function for different compositions are shown in Fig. 3.13. Only
two different compositions are shown because as soon as a small amount,
q ∼ 0.1, of main chains, are introduced to the system then it switches to
being very close to the curve of q = 1.0. This can then be substituted into
the formula for the polarisation as in the previous section. The resulting
polarisation is illustrated in Fig. 3.14. An expression for the polarisation can
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Figure 3.13: The figure shows a plot of the angle of the direc-
tor to the z axis as a function of the applied shear, λ when
no relaxation is allowed. The different curves correspond to
different mixtures of the main chain and side chain polymers.
The fraction of main chain is denoted by q.

be calculated and is given by the expression

2Py

nsd
b
a

=
q(1− q)(r1 − 1)(r2 − 1)(r1 − r2)〈r〉λ

r1r2(〈r〉 − 1)

{

4〈r〉2λ2 +
(

1− q(1−q)(r1−r2)2

r1r2(〈r〉−1) + 〈r〉(λ2 − 1)
)2
}

1
2

(3.70)
where 〈r〉 = qr1+(1−q)r2. This expression tends to have a maximum around
λ = 1. The expression also simplifies markedly for the composition such
that 〈r〉 = 1. In this case the director does not move under the shear. The
polarisation expression then simplifies to

2Py

nsd
b
a

=
(r1 − 1)(r2 − 1)λ

(r1 − r2)
(3.71)

The director now remains fixed along the z-axis in this case as the shear is
carried out. This is now very similar to the toy model of [48].

3.5 Conclusions

Analysis of the symmetry of the free energy density of a chiral liquid crystal
elastomer shows that the elastomer can develop a polarisation. One way it
can do this is similar to the flexoelectric effect in liquid crystals. An alter-
native mechanism is via a main chain polymer composed of chiral monomers.
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Figure 3.14: The figure shows a plot of the polarisation as a
function of the applied shear, λ when no relaxation is allowed.
The different curves correspond to different mixtures of the
main chain and side chain polymers. The fraction of main
chain is denoted by q.

However, the polarisation of a sheared pure chiral liquid crystalline elastomer
relaxes to zero. This result is robust and cannot be changed by considering
a semi-soft elastomer or by introducing rod cross linkers into the elastomer.
Another direction is required in the problem. Three methods by which a po-
larisation can develop have been suggested. The first relies the slow response
of the director and a rapid response of the network so that the director lags
behind its equilibrium orientation. The second method is to anchor the di-
rector to the layer normal in a smectic. The third method changes how the
chiral main chain monomers relax by considering a binary mixture of polymer
chains. This effect was illustrated here for a mixture of chains of different
degrees of prolate anisotropy. If the rubber is allowed to relax, then it has
little effect on the polarisation. We can estimate the resulting polarisation
as follows: d ∼ 1.6 × 10−19 C ·1Å, b

a ∼ 1
10 and ns ∼ 3 × 1026 m−3. Thus

fnsd
2

(

b
a

)

∼ 50 × 10−6Cm−2 or P
σ ∼ 50 × 10−12C N−1. This can be com-

pared to the polarisation of α–quartz: P1 = e11x where P1 is the polarisation,
x is the applied strain and e11 is the required coefficient and has a value
e11 ≈ 0.173Cm−2. Thus the α–quartz has a much greater polarisation per
unit strain. However the typical applied strain is much smaller: x ∼ 0.2%, so
we expect a polarization of P ∼ 340× 10−6 Cm−2. Alternatively the Young’s
modulus of quartz is E ∼ 70 GPa so: P

σ ∼ 5 × 10−15C N−1. Thus although
this mechanism of polarisation for a rubber produces a polarisation that is,
per unit strain, much smaller than in a crystal, a rubber can be subjected to
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a much larger strain so can obtain a polarisation only an order of magnitude
less. If we carry out the same analysis for mixtures of prolate and oblate
chains then it may be possible to increase the polarisation of the rubber by a
factor of ∼ 10.
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Smectic liquid crystal
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Chapter Four

The elasticity of smectic-A
elastomers

A
model of smectic elastomers is developed in this chapter, starting
from a microscopic model that is used calculate the properties of an aver-

age chain, and then using the affine approximation to build up the properties
of the whole elastomer.

4.1 Introduction

Smectic liquid single crystal elastomers share properties with both smectic
liquid crystals and nematic elastomers. In this introduction some of the prop-
erties of smectic liquid crystals are discussed, aswell as methods used to de-
scribe them. In particular the Helfrich-Hurault effect, observed experimentally
in smectic A (SmA) liquid crystals by Clark and Meyer [55], is examined.
Some of the experimentally measured properties of SmA elastomers are then
reviewed, and the terms used in the continuum model to describe smectic
elastomers summarised.

4.1.1 Smectic liquid crystal order parameter

Smectic and nematic liquid crystals are both composed of rod like molecules.
However in the case of smectic liquid crystals, a short range anisotropic at-
tractive interaction causes a modulation in the density of the rods in addition
to the alignment of the rods along a particular direction. This modulation in
the density distinguishes the smectic phase from the nematic phase and can
be used to define an order parameter for the smectic phase. The density can

81
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be expressed as

ρ(x) = ρ0 +
∑

n

[

〈ψn〉einq0·x + c.c.
]

, (4.1)

where the sum over all integer values, n, and q0 = 2π
d0
ẑ is the wave vector

of the layers. Typically only the n = 1 component is required. An order
parameter can be defined from the oscillations in the density which can be
written as

〈ψ1〉 = |〈ψ1〉|e−iq0u (4.2)

where |〈ψ1〉| gives the size of the density modulations and e−iq0u gives the
phase of the modulations relative to a defined origin. Planes of constant
density within the smectic can be identified with planes of constant phase of
the order parameter

φ = q0 · x− q0u, (4.3)

where u can be interpreted as giving the displacement along the old layer
normal from the reference layer position to the current position of the layer as
shown in Fig. 4.1. The equation for the layer planes in terms of the old layer

nu

Figure 4.1: The figure shows the interpretation of the variable
u as the vertical displacement of a layer with respect to its
reference position (dashed lines).

normal, n0, and their spacing, d0, in the reference frame coordinate x is

n0 · x− u = nd0 (4.4)

4.1.2 Microscopic model of the N/I – SmA phase transition

The ordering of the smectic phase can be understood by an extension of the
Maier-Saupe model of the nematic phase [56, 57] carried out by McMillan
[53]. These models are mean field models of the ordering in liquid crystals.
In the Maier-Saupe model the rods that make up the liquid crystal are in an
effective potential that depends on their angle to the average direction of all
the other rods. In McMillan’s model of an SmA liquid crystal, the potential
is also dependent on the distance between the rods. The anisotropic part of
the interaction is assumed to be proportional to

e−(r12/r0)2
(

3
2 cos

2 θ12 − 1
2

)

, (4.5)
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where r12 is the distance between the centres of mass, r0 is roughly a molecular
length, and θ12 is the angle between the two rods. The attractive force between
molecules results in a density wave in the mean field picture that can be
described by the order parameter

σ = 〈cos(x · q)
(

3
2 cos

2 θ12 − 1
2

)

〉, (4.6)

where q is the wave vector associated with the smectic layers. The system
still has the orientational order described by the order parameter

η = 〈32 cos2 θ − 1
2〉. (4.7)

The one-particle self-consistent potential is assumed to be of the form

V1(z, θ) = −V0η
(

1 + ασ cos

(

2πz

d

))

(

3
2 cos

2 θ − 1
2

)

, (4.8)

where d is the layer spacing and α = 2e−(πr0/d)2 . The one-particle distribution
function is given by

p(θ, z) =
1

Z
e
−V1(z,θ)

kBT (4.9)

Z =

∫ d

0
dz

∫ π

0
e
−V1(z,θ)

kBT sin θdθ. (4.10)

The entropy and internal energy of N molecules can then be evaluated to find
the free energy of the system

−TS = NV0(η
2 + ασ2)−NkBT lnZ (4.11)

U = −1
2NV0(η

2 + ασ2) (4.12)

F = U − TS. (4.13)

The free energy can then be minimised w.r.t. the order parameters and solved
self-consistently for η and σ given values of T and α. This model provides
a useful conceptual basis for the SmA phase transition. However, it predicts
that the transition is first order. McMillan completed several experimental
studies in which he found evidence for both first [58] and second order [59]
smectic phase transitions. For a more detailed discussion of the nematic SmA
phase transition see, inter alia, [60].

4.1.3 Smectic liquid crystal free energy

The terms in the free energy that describe the SmA phase differ from those
of the nematic phase primarily by the addition of a term pertaining to the
compression (and dilatation) of the layers. Assuming that the smectogens
always remain normal to the layers, it is possible to calculate the orientation
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of the director from the layer displacement. The layer normal is parallel to
∇φ where φ is defined in Eq. (4.3). The free energy cost of bending the layers
can be calculated from the Frank elastic term associated with splay, but with
renormalised elastic constants compared with a nematic because of the layer
formation. Assuming that ∇u is small then the following results are obtained

nx = −∂u
∂x

(4.14)

ny = −∂u
∂y

(4.15)

f = 1
2B

(

∂u

∂z

)2

+ 1
2K1

(

∂2u

∂x2
+
∂2u

∂y2

)2

. (4.16)

Note that the associated length scale ξ = (K1/B)1/2 is of the order of the layer
thickness, and that there can be no twist deformation because n · ∇ × n = 0
by the commutative property of the partial derivatives for sufficiently smooth
functions. Typically, the Frank elastic constant, K1, is larger than that of
nematics because of the higher degree of order in smectics.

The Helfrich-Hurault effect requires the calculation of the contribution of
the magnetic field to the free energy. The susceptibility tensor χ is uniaxial

with its principal axis along the director n, so the magnetisation (induced by
the external magnetic field) is given by: M = χ·H = χ⊥H+(χ‖−χ⊥)(H·n)n.
The part of the magnetic free energy density that depends on the director is
thus given by

fmag = −1
2µ0χa (n ·H)2 , (4.17)

where χa = χ‖ − χ⊥ is the anisotropy in the susceptibility of the rods.

4.1.4 The Helfrich-Hurault effect in smectic liquid crystals

The Helfrich-Hurault effect has been analysed in [61] as follows. Consider an
SmA liquid crystal between two plates, with the layers parallel to the walls.
Applying a magnetic field to the system (Fig. 4.2) in the plane of the layers
generates a torque that acts to turn the layers. The clamping at the walls will
prevent the rotation of layers occurring because as soon as the layer rotation
starts there is an infinite energy cost as the layers pile up at the walls, and
their spacing there collapses.

An alternative to this bulk rotation is local rotation of different parts of
layers in opposite directions, so that the layers lower their energy with respect
to the magnetic field whilst avoiding the cost associated with reducing the
layer spacing, as well as any global layer movement. Above a certain threshold
magnetic field, H, the layers start to rotate. This can represented in terms of
the layer displacement variable

u(x, z) = u0(z) cos kx. (4.18)
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H z
y

x

High energy cost at boundary
Global rotation of layers

Flat at boundary
Local rotation of layers 

Figure 4.2: An illustration of the magnetic field configuration
required to see the Helfrich-Hurault effect. After the field is ap-
plied in the direction shown we can either rotate all the layers
or locally rotate different parts of layers in opposite directions.

This is subject to the constraint that the amplitude of the displacement is zero
at the edges of the sample, z = 0, L. Only the first harmonic is considered
here as an illustration

u0(z) = u0 sin kzz, (4.19)

where kz = π/L. The director can be calculated from the layer displacement
because it remains normal to the layers

nx ≈ −∂u
∂x

= ǫ sin(kzz) sin(kx) (4.20)

ny = 0 (4.21)

nz ≈ 1, (4.22)

where ǫ = u0k. Substituting this expression for the layer displacement into the
Frank elastic and magnetic energy densities of the liquid crystal the following
is obtained

〈fel〉 = 1
2ǫ

2

[

B
k2z
k2

〈cos2 kzz〉〈cos2 kx〉+K1k
2〈sin2 kzz〉〈sin2 kx〉

]

(4.23)

〈fmag〉 = −1
2χaµ0H

2〈n2x〉 = −1
2χaµ0H

2ǫ2〈sin2 kzz〉〈sin2 kx〉. (4.24)

The minimum in the total free energy occurs when k2 = π/(ξL), where
ξ2 = K

B . This is the optimal wavelength of the distortion that reaches a
compromise between bending the layers and keeping their spacing fixed. The
critical magnetic field can be calculated from the condition that the elastic
and the magnetic terms exactly cancel

χaµ0H
2
c =

2πBξ

L
. (4.25)

The strength of the field required to see this transition is extremely strong,
and the required sample must be extremely uniform. However, this transition
can be seen in a simpler, mechanical context.
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4.1.5 Mechanical Helfrich-Hurault effect in smectic liquids

When a slab of SmA liquid crystal is put under mechanical tension by moving
apart the bounding plates, then periodic undulations are observed in the layers
as in the Helfrich-Hurault transition induced by a magnetic field. This effect
is only observed under tension. To understand this effect it is necessary to
improve the approximation to the layer spacing used in calculation of the free
energy. If the layers are rotated by a small amount then the distance between
the new layer position and the old layer position is ξ cosnx. There is thus a
second order correction to the dilatation energy density of the layers

fdil =
1
2B

(

∂u

∂z
− 1

2

(

∂u

∂x

)2
)2

. (4.26)

The layer displacement can be broken up into two parts: u = ǫz + u0(z, x).
The first part is the uniform displacement and the second part describes the
undulation. Near the threshold u0 will be infinitesimal. Thus expanding the
free energy density up to order u20 results in

f = 1
2B

(

ǫ2 − ǫn2x + 2ǫ
∂u0
∂z

)

+ 1
2K1

(

∂2u0
∂x2

)2

. (4.27)

The linear term in u0 gives zero on averaging over z. The resulting expression
has the same form as the free energy in a magnetic field with the identification

−1
2χaµ0H

2n2x = −1
2Bǫn

2
x. (4.28)

Thus a critical deformation can be identified, at which the undulations in the
layers start to develop. The critical deformation is given by

ǫc =
2πξ

L
. (4.29)

Note that a similar buckling instability is found in numerous other fields in-
cluding thermoplastics and structural geology [62].

4.1.6 The physical properties of smectic elastomers

SmA and SmC elastomers have been aligned into monodomain samples via
first making a polydomain elastomer film, loading with a small stress, heating
into the isotropic state and then allowed to cool slowly into the smectic state
[63, 64]. The alignment of these samples and the formation of the layers was
confirmed by x-ray scattering data.

The elastic properties of these films show several interesting effects. Firstly,
when the films are stretched in the plane of the layers, contraction only occurs
in the perpendicular direction and not along the layer normal. Hence for small
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Figure 4.3: The experimental results of [65] show that when
the SmA elastomer is stretched perpendicular to the layer nor-
mal the sample width does not change, indicating that the
Poisson ratios in the y and z directions are (1, 0).

deformations where the Poisson ratios are defined, they take extreme values
of (1, 0) [65]. This is illustrated in Fig. 4.3.

When stretched parallel to the layer normal, smectic elastomers show a
remarkably different response. In the experiments of Nishikawa and Finkel-
mann [66] the smectic elastomer film initially had a modulus 3.2× 106Nm−2.
The sample also contracted equally in the two perpendicular directions, that
is it had Poisson ratios (1/2, 1/2). Once the strain reaches a value of approxi-
mately 3% the mechanical behaviour changes remarkably. The modulus drops
to 1.3× 105Nm−2 and the sample immediately becomes opaque. It still main-
tains the same Poisson ratios, that is it keeps contracting equally in the two
perpendicular directions. The modulus before threshold is comparable to that
of the compression modulus B of layers of the liquid crystal SmA phase. After
the threshold the modulus is comparable to the rubber modulus measured on
stretching parallel to the layer planes. The elastic data for this experiment
and photographs of the smectic elastomer film are shown in Fig. 4.4(a) and
(b) respectively.

In the same paper Nishikawa and Finkelmann report x-ray scattering pat-
terns of the smectic film as it is stretched along the layer normal. The x-ray
scattering patterns show clear evidence for the onset of layer rotation at the
threshold strain. However, there is a rapid loss of x-ray scattering intensity
from the layer scattering peaks attributed to the melting of the smectic phase.
These experimental features are returned to in §4.4 to compare them with the
predictions of the model developed in §4.2.

Since large deformations are required to see the threshold behaviour in
these samples, a non-linear model of a smectic elastomer is required.

An alternative method of measuring the elastic properties of smectic elas-
tomer films was reported in [67]. In this case a smectic elastomer film is
formed as a balloon across the end of a capillary tube. The pressure inside
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a) b)

Figure 4.4: a) The experimental results of [66] for a smectic
elastomer stretched parallel to the layer normal, b) a photo-
graph of the elastomer before the threshold (clear) and after
(opaque).

the balloon can be altered and the change in radius measured yielding the
stress strain characteristics of the film. In these experiments it was observed
that in weakly coupled smectic elastomers there is no signature of the smectic
layer system [68] and [69]. These systems are not considered here.

4.1.7 Continuum model of a smectic elastomer

The elastic properties of smectic liquid crystals can be calculated for small de-
formations based on the continuum free energy. The terms that are included
in this free energy are the sum of the contributions for the ordinary nematic,
the ordinary smectic, and the elastomer. These different degrees of freedom
are then coupled together. The different contributions to the continuum free
energy will be pointed out here. A full discussion can be found in [46]. The
contributions to the free energy density will be denoted as: felastic for the uni-
axial elastic energy density, fnem for the Frank elastic terms and the coupling
between the elastomer and the director, fsmA for the Landau-de Gennes smec-
tic order terms and fsmA−el for the terms pertaining to the coupling between
the layers and the rubber matrix

felastic = C1(n · ǫ · n)2 + 2C2Tr[̃ǫ](n · ǫ · n) + C3

(

Tr[̃ǫ]
)2

+2C4[n× ǫ× n]2 + 4C5[n× ǫ · n]2. (4.30)

In this equation ǫ̃ denotes the symmetric part of the deformation tensor λ,

and ǫ denotes the same symmetric part after the non-volume preserving parts

have been removed (i.e. it has been made traceless). Note C1, C4 and C5 are
of order µ whereas C3 is of order the bulk modulus and C2 is smaller that µ.

fnem = 1
2D1

[

(v(a)xz − δnx)
2 + (v(a)yz − δny)

2
]
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−D2

[

(v(a)xz − δnx)ǫxz + (v(a)yz − δny)ǫyz

]

+1
2K1(div δn)

2 + 1
2K2(curl δn)

2 + 1
2K3(∂zδn)

2 (4.31)

where v
(a)
ij is the antisymmetric part of the deformation tensor, λ.

fsmA = 1
2

(

τ |ψ|2 + 1
2β|ψ|4 + g‖|∂zψ|2 + g⊥|(∇⊥ − iq0δn)ψ|2

)

(4.32)

where ψ(r) = |ψ(T )|e−iq0u(r) is the smectic order parameter. The first gradient
term expresses the rigidity of the smectic layers: B = g‖q

2
0 |ψ|2 and the second

gradient term expresses the coupling of the director to the layer normal.

fsmA−el = Λ [Vz(r)− u(r)]2

∼ Λ [Vz(0)− u(0)]2 + ΛL2
∑

j

[∇ju(0)− vzj]
2

+Λ

∫

[ũ(r)− Ṽz(r)]
2 (4.33)

where u denotes the layer displacement, Vz denotes the displacement of the
elastic matrix in the z direction (r → r+V), vzj is defined by the expansion
of V: Vj(r) = Vj(0) + rivji + Ṽj and ũ(r) and Ṽz(r) denote the fluctuating
components of the layer displacement and the matrix displacement in the
z direction respectively. It is remarkable that the system size L occurs in
the second term. This term is a very rigid constraint which is derived and
discussed below. This contribution to the free energy density is studied in
[70].

The free energy terms outlined above are used in the continuum theory
of smectic elastomers. To study the elastic properties of the network one can
average over the nematic director position, and to study the nematic director
one can average over the elastic degrees of freedom (see [46] for more details).
In addition to the above terms the effects of the cross-links have also been
considered close to the smectic-nematic transition. In elastomers the volume
fraction of cross-links is much smaller than that of the backbone and mesogenic
groups so the cross-links exist in a mesogenic environment. The cross-link’s
effect on the smectic order is to enhance smectic order and locally fix its phase.
This has a free energy density contribution

fRF =
∑

α

γ|ψ(Rα)| cos {q0[zα − u(Rα)]} (4.34)

where Rα is the position of the αth cross-link point, and γ is the coupling
constant. The effects of this term on the N-SmA transition have been studied
in detail in [71].

The interplay of these free energy terms has been studied in [72], where
it was reported that this coupling destroys the conditions required for soft
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nematic elasticity. It was also found that the smectic layer modulus is respon-
sible for the large anisotropy found by Nishikawa and Finkelmann [66].

The undulation instability in SmA liquid single crystal elastomers has been
studied using this continuum theory [73]. A technique very similar to that
outlined in §4.1.4 was used to calculate the threshold strain and the critical
wavenumber to compare with the experiments of [66]. The results obtained
were 10−3cm< λc < 10−2cm (here λc refers to the length scale of the stripes
not to the imposed strain) together with a threshold strain of ǫc ≈ 1

2
C1
B ≈ 1%.

4.2 Microscopic, finite deformation model of the

smectic elastomer

A microscopic model of a nematic elastomer can be formulated from analysing
the probability distribution of the occurrence of particular end-to-end spans of
a polymer. This average end-to-end distribution gives the average properties
of all chains, and is used as a representative of the elastomer as a whole. This
approach works particularly well for nematic elastomers.

For a smectic elastomer both the span of a polymer chain and its position
relative to the smectic layers are significant. This interaction between the
polymer chains and the smectic order is modelled here as follows. The smectic
order presents a series of potential wells, forming a corrugated potential, in
which the cross-link points sit as illustrated in Fig. 4.5. Deviation of the cross-
link points from these wells is penalised because it disrupts the smectic order
of the layers, and because of the steric repulsion between the cross-link point
and the mesogens.

The probability distribution as a function of the positions of the ends of
the chain, R1 and R2 is given by

P0(R1,R2) ∝ exp

{

− 3

2L
RT

12 · ℓ−1
0 ·R12 + 2β cos(α− qT

0 ·R1)

+2β cos(α− qT
0 ·R2)

}

(4.35)

≈
∑

n,m

exp

{

− 3

2L
RT

12 · ℓ−1
0 ·R12 − β(2πn − qT

0 ·R1 + α)2

−β(2πm− qT
0 ·R2 + α)2

}

(4.36)

=
∑

m,n

P0(m,n)(R1,R2), (4.37)

where R12 = R1 −R2, L is the arc length of a polymer, q0 is the wave vector
of the smectic layers, β defines the strength of the potential in which the layers
are sitting and we use the definition

ℓ0 = ℓ⊥δ + (ℓ‖ − ℓ⊥)n0n
T
0 (4.38)
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R 2

R 1

V

O

Figure 4.5: The figure shows an illustration of the microscopic
model of a smectic elastomer, in which the cross-link points
sit in a periodic potential as a result of the smectic ordering.
Note the smectogens are not shown for clarity.

Note that this probability distribution does not penalise the polymer chain
for moving across layers (see for example [74]). This effect could be partially
taken into account by using a different value of the anisotropy, r. It is assumed,
without loss of generality, that the first layer in the system sits at the origin
α = 0, i.e. there is no displacement w.r.t. the background. In Eq. (4.36)
the limit of β ≫ 1 has been taken and the probability distribution written
as a sum over all the layers labelled by n and m in which the two different
ends can sit. The cosine functions have been written as a power series and,
since β ≫ 1, only the first term taken. The summation sign can then be
brought down from the exponent because since, β is so large, all the wells of
the potential are effectively decoupled. This expression is useful in calculating
the quenched average since each cross-link point has to be quenched into a
particular layer. A one dimensional version of this probability distribution is
shown in Fig. 4.6, for P0(m,n)(0,R2) where R2 is parallel to q0.

It is useful to convert to centre of mass and span coordinates as follows

P = 1
2(R1 +R2) (4.39)
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Figure 4.6: An illustration of the smectic chain probability

distribution: f(x) ∝ e−
x2

10
−20 cos(2x). Each one of the peaks

is separated so this function can be replaced by a sum over
Gaussian peak shapes displaced from the origin.

Q = (R1 −R2) (4.40)

x = (n +m) (4.41)

y = (n −m). (4.42)

Any change in the Jacobian from this change of variables for the following in-
tegrals is cancelled out in the normalisation factor. The exponent in Eq. (4.36)
then contains the following

− 3

2L
Q · ℓ−1

0 ·Q− 1
2β(2πy − qT

0 ·Q)2 − 2β(πx− qT
0 ·P)2. (4.43)

When the smectic elastomer is formed deep in the smectic phase, the specific
layer that the cross-link points are in will be a quenched variable, that is both
x and y are quenched variables. When the cross-links are formed the span of
the polymer, Q, is quenched in, and since both the ends of the chain are fixed
into a network then the coordinate P must also be quenched. To calculate the
free energy density of the system after deforming the matrix by λ, translating

the matrix by b and translating the smectic layers by t the following quenched
average must be performed

f = −kBT
∫

dP

∫

dQ
∑

x

∑

y

P0(x,y)(P,Q) lnP(x,y)(λ ·P+ b, λ ·Q)

=
kBT

N

∫ ∫

dPdQ
∑

x

∑

y

exp

{

− 3

2L
Q · ℓ−1

0 ·Q− 1
2β(2πy − qT

0 ·Q)2
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−2β(πx− qT
0 ·P)2

}

·
[

3

2L
QT · λT · ℓ−1 · λ ·Q+

β

2
(2πy − qT · λ ·Q)2

+2β(qT · t+ πx− qT · (λ ·P+ b))2
]

, (4.44)

where N is the normalisation constant for the probability distribution. This
integral can be separated out into an integral over P and an integral over Q.
These two integrals are now performed one at a time, dealing first with the P
integral

1

N

∫

dP
∑

x

exp
{

−2β(qT
0 ·P− πx)2

}

[

2β(qT · t+ πx− qT · (λ ·P+ b))2
]

.

To perform the sum over x, note that β ≫ 1 so that it is a very narrow
Gaussian distribution in x. As a result the sum over x picks out a particular
value of x = 1

πq
T
0 ·P. The resulting expression is

1

N

∫

dP

(

2β
[

qT · t− qT · (λ ·P+ b) + qT
0 ·P

]2
)

= 2β

[

(qT · (t − b))2 +
L2
i

12
(qT · λ− qT

0 )
2
i

]

, (4.45)

on completing the P integral as well. This expression, though an energy
density, contains the size of the system in the ith direction, Li, since the
integral is not governed. This is because if the layers were to rotate relative
to the network in such a way as to not be commensurate with the cross-
link points, then all of the cross-links throughout the whole sample would be
displaced from the minimum in the smectic potential by an amount scaling
with the lineal dimension of the system, resulting in a massive energy cost.
This term can be made zero (minimised) only if qT · λ and qT

0 are parallel.

Their magnitudes can be made to agree by modifying d which is penalised
separately by the modulus B. Thus the rotation of the layers with the applied

deformation is a rigid constraint

q = λ−T · q0 (4.46)

The first term of Eq. (4.45) describes the penalty associated with a mismatch
between the smectic layers and the matrix arising from translation of one
relative to the other. These two terms arise in the continuum model of layer-
matrix coupling in Eq. (4.33) and in [70].

The integral over the variable Q is now considered

1

N

∫

dQ
∑

y

exp

{

− 3

2L
Q · ℓ−1

0 ·Q− 1
2β(2πy − qT

0 ·Q)2
}

·
[

3

2L
QT · λT · ℓ−1 · λ ·Q+

β

2
(2πy − qT · λ ·Q)2

]

(4.47)
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The same procedure as that used for the previous integral is used; first the
sum over y is evaluated picking out the particular value y = 1

2πq
T
0 · Q, and

then the integral over Q performed. After carrying out the sum over y the
result is

1

N

∫

dQ exp

{

− 3

2L
Q · ℓ−1

0 ·Q
}

·
[

3

2L
QT · λT · ℓ−1 · λ ·Q+

β

2
(qT

0 ·Q− qT · λ ·Q)2
]

(4.48)

The integral over Q can then be performed. The first term results in the
usual trace formula expression. The second term can be evaluated using the
average: 〈QTQ〉 = 1

3Ll0. The result is then

Lβ

6
Tr
[

ℓ0 ·
(

q0 · qT
0 + λT · q · qT · λ− λT · q · qT

0 − q0 · qT · λ
)]

(4.49)

This expression can be simplified by using the following definition of ℓ0 given

in Eq. (4.38). Since n0 and q0 are parallel this simplifies to

Lβ

6
Tr

[

(

2π

d0

)2

ℓ‖δ + ℓ0 · λT · q · qT · λ− λT · q · nT
0

2π

d0
ℓ‖ −

2π

d0
ℓ‖n0 · qT · λ

]

This expression can be rearranged into

Lβ

6

(

(ℓ
1/2
0 · λT · q)− 2π

d0
n0

√

ℓ‖

)2

(4.50)

It can be seen from this expression that this constraint penalises q if it is not
equal to λ−T · q0. The resulting terms from the Q integral are thus

1
2

{

Tr
[

λ · ℓ0 · λT · ℓ−1
]

+
Lβ

3

(

(ℓ
1/2
0 · λT · q)− 2π

d0
n0

√

ℓ‖

)2
}

(4.51)

Thus our final microscopic model for the smectic liquid crystal elastomer is of
the form

f =
µ

2
Tr
[

λ · ℓ0 · λT · ℓ−1
]

+
1

2
B

(

d

d0
− 1

)2

, (4.52)

where µ = kBTns. The second term is the layer compression penalty from the
smectic free energy density. The identification of the layer normal, q with the
director, n, is rigidly made here, that is in the notation of [72] b⊥ → ∞. The
constraint: q = λ−T · q0 is rigidly imposed.
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4.2.1 Affine layer model

The constraint on the smectic layer normal can be understood geometrically,
by calculating how the layer deforms if it moves affinely with the matrix.
Consider the affine deformation of a system such that

x → λ · x. (4.53)

To calculate the new layer normal take two vectors that lie in the plane of
the smectic layer and calculate how they deform with λ. Then take the cross

product of these two vectors to find the new normal, n. This is illustrated in
Fig. 4.7.

k m

λ k.
λ. m

λ k.

λ. m

mk

λ

Figure 4.7: The figure shows how the normal to the layer
deforms when the vectors in the layer deform according to
x → λ · x.

The new normal is thus given by

n =
(λ · k)× (λ ·m)

|(λ · k)× (λ ·m)| (4.54)

This expression can be rewritten in a more familiar form by using the prop-
erties of the cofactor matrix. The matrix of cofactors can be written as
det(λ)λ−T , i.e. the determinant multiplied by the inverse transpose of the

matrix. The determinant can be calculated from the expression

det(λ)ǫijk = ǫαβγλαiλβjλγk. (4.55)

The deformations considered here are volume conserving deformations so
det(λ) = 1. Multiplying from the right by (λ−1)kp gives

ǫαβpλαiλβj = λ−1
kp ǫijk = λ−T

pk ǫijk. (4.56)

Substituting this expression into that for n above and setting k × m = n0,
results in the following

n =
λ−T · n0

|λ−T · n0|
. (4.57)
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From this expression it is clear that the layer normal should deform according
to the transpose of the inverse matrix, i.e. the matrix of cofactors.

The layer spacing for this affine model can also be calculated. Consider
two adjacent planes in the deformed system, the first of which contains the
point p and the second contains the point q as illustrated in Fig. 4.8. From

d0

x

O
O

d

d0
x+ n0

q
p

Figure 4.8: The figure shows the required vectors to calculate
the spacing between the layers as the elastomer is deformed.

Fig. 4.8 it is clear that

p = λ · x (4.58)

q = λ · x+ d0λ · n0 (4.59)

The displacement between these points resolved along the layer normal gives
the spacing between the smectic layers

d = (q− p) · n (4.60)

= d0(λ · n0) · n. (4.61)

Assuming that the normal is initially parallel to the z axis then the layer
spacing can be written as

d

d0
= (λ · n0) ·

λ−T · n0

|ǫijkλjxλky|
(4.62)

=
1

|ǫijkλjxλky|
(4.63)

where Eq. (4.54) has been used to substitute for n and the denominator rewrit-
ten by identifying k = x̂ and m = ŷ. The cross product expression that pro-
duces the new layer normal can be thought of geometrically as calculating the
distance along the normal between two planes, or equivalently as calculating
the area of the plane. These two statements are equivalent because the system
is volume conserving.
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4.3 Finite deformation examples

The elastic properties of a smectic elastomer are now explored for various
different deformations using the free energy density

f = 1
2µTr

[

λ · ℓ0 · λT · ℓ−1
]

+ 1
2B

(

d

d0
− 1

)2

, (4.64)

which was derived in §4.2. First the case where the layer spacing is rigidly
fixed (B → ∞) is examined in §4.3.1, then this constraint is relaxed in §4.3.3.
The four cases depicted in Fig. 4.9 are examined.

b)a) c) d)

x

z

λ λ λ λzz xx xz zx

Figure 4.9: Imposed deformation; a) stretching parallel to the
layer normal, b) stretching perpendicular to the layer normal,
c) shearing the layers in their plane and d) shear out of the
planes.

4.3.1 B → ∞
In this section the layer modulus is so large that there are effectively two
constraints to incorporate into the calculation: constant volume and constant
layer spacing. Note that in the following section the director and the layer
spacing can be calculated in the following way: take the initial director along
z, that is n0 = ẑ and thus from Eq. (4.57) the director is given by

ni = λ−T
iz . (4.65)

Since the layer spacing does not change there is no need to calculate the
normalisation factor. The layer spacing can then be calculated from the same
cofactor elements that appear in this expression for the director

d

d0
=

1
(

λ−T
iz λ−T

iz

)1/2
. (4.66)

In the following sections d/d0 = 1 because of the large B value so the above
equation provides a method for calculating this constraint. The convention
that λ denotes the imposed element of the deformation matrix is also adopted.
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Imposed λzz

In the first case illustrated in Fig. 4.9 a), the following form of the deformation
tensor will be considered

λ =





λxx 0 0
0 λyy 0
λzx 0 λ



 . (4.67)

The shear component λzx is allowed to relax because, when the layers are
constrained to move with the matrix, it allows rotation away from the stretch
axis. The constraints of constant volume and constant layer spacing can be
expressed respectively as

1 = λxxλyyλ (4.68)

1 = λ2yy(λ
2
xx + λ2zx). (4.69)

The director can be calculated from Eq. (4.57) using the tensor λ given in

Eq. (4.67). The resulting director orientation can be written as

n = (−λyyλzx, 0, λxxλyy). (4.70)

Note that this is normalised because of the constraint of constant layer spacing,
Eq. (4.69). Substituting these expressions into the free energy density results
in

f = 1
2µ

{

1 + λ2xxλ
2 +

1

λ2xxλ
2
+ r

(

λ2 − 1
)

}

. (4.71)

This expression can be minimized w.r.t. λxx and has a minimum when λxx =
1
λ . The resulting relaxed deformation gradient tensor and director are given
by

λ =





1
λ 0 0
0 1 0√
λ2−1
λ 0 λ



 ; n =
(

−
√
λ2−1
λ , 0, 1λ

)

(4.72)

Note that this deformation is exactly that required to preserve the areas of
the layers, as can be seen by looking at the projected area and comparing it
to n · z. Using this deformation and director, the free energy is given by

f = 1
2µ
{

3 + r(λ2 − 1)
}

. (4.73)

This expression for the free energy density is pathological in that it does
not have zero slope at λ = 1. However at this point the material cannot be
compressed along the layer normal due to the infinite value of B (we can never
achieve λ < 1). The free energy thus does have a minimum at λ = 1 although
it is not smooth there. This is illustrated in Fig. 4.10 together with diagrams
of the deformed layers at the different deformation values. Also note that the
transition to the sheared state is not possible in compression because the layer
spacing in the z direction can only be increased by a λzx shear.
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Figure 4.10: The figure shows the free energy density of a
smectic elastomer with B → ∞ as a λzz deformation is applied,
together with illustrations of the deformed state at λzz = 1 and
1.3.

Imposed λxx

This deformation is illustrated in Fig. 4.9 b). For a stretch in the plane the
following deformation tensor is used

λ =





λ 0 λxz
0 λyy 0
λzx 0 λzz



 . (4.74)

The director in this case is given by

n = (−λyyλzx, 0, λyyλ) (4.75)

Note that to move the director in the xz plane the component λzx must be
included. A λxz alone is not enough. The constraints of constant volume and
layer spacing are given by

1 = λλyyλzz − λyyλzxλxz (4.76)

1 = λ2yy(λ
2
zx + λ2). (4.77)

The free energy is given by the following expression

f = 1
2µ

1

λ2zx + λ2
(

λ2zx
(

λ2yy + rλ2zz + λ2zx + λ2xz
)

+ 2(r − 1)λzzλzxλxzλ

+
(

λ2yy + λ2zz + 2λ2zx + rλ2xz
)

λ2 + λ4
)

. (4.78)

The two constraints can be used to eliminate two of the variables. The choice
of which variables to eliminate must be make with care so that the resulting
deformation matrix still incorporates the constraints. The variables λyy and
λzz are eliminated here.
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On elimination the free energy density is given by

f = 1
2µ

{

1 + rλ2xz + λ2 + λ2zx +
1

λ2zx + λ2
+

2rλxzλzx
λ2

√

λ2zx + λ2

+
λ2zxr

(

1 + λ2xz
)

λ2

}

. (4.79)

This can be minimized w.r.t λxz and λzx. The first of these yields the expres-
sion

λxz = − λzx
√

λ2zx + λ2
. (4.80)

On substituting this into the expression obtained after minimisation w.r.t λzx
we obtain the following equation

λ2λzx
(

(−1 + λ2zx + λ2
)
√

λ2zx + λ2
(

1 + λ2zx + λ2
)

= 0. (4.81)

From this equation it is clear that the following real solutions for λzx are
obtained

λzx = ±
√

1− λ2, 0 (4.82)

The first of these solutions is only valid for λ < 1 and gives λxz = −λzx,
λyy = 1, λzz = λ. In this solution λ corresponds to a rotation about the y

axis. This solution is disregarded here and the second, λzx = 0, is examined.
From this result it follows that the director does not rotate when a stretch in
the plane of the layers is applied. The remaining components in this case, and
the free energy density are given by

λyy =
1

λ
(4.83)

λzz = 1 (4.84)

f = 1
2µ

{

λ2 +
1

λ2
+ 1

}

. (4.85)

The Poisson ratios of the material in this configuration are of interest exper-
imentally. In this case the Poisson ratios are (1, 0) in the (y, z) directions
respectively. Note that since the material is incompressible the sum of the
Poisson ratios must be 1.

Imposed λxz

For an imposed λxz, as shown in Fig. 4.9 c), it is not immediately clear how
general a deformation matrix is required. Initially an upper triangular de-
formation matrix is considered here, and followed by a more general type of
deformation matrix

λ =





λxx 0 λ
0 λyy 0
0 0 λzz



 . (4.86)
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The constraints of volume conservation and constant layer spacing are then

1 = λxxλyyλzz (4.87)

1 = λ2xxλ
2
yy. (4.88)

In this case the director remains parallel to the z axis throughout the defor-
mation, and the free energy density is

f = 1
2µ

{

1 +
1

λ2xx
+ λ2xx + rλ2

}

. (4.89)

On minimising w.r.t. λxx it follows that λ2xx = 1. Substituting this back into
the free energy density

f = 1
2µ
{

3 + rλ2
}

. (4.90)

This has a minimum at λ = 0 as expected for a shear deformation.
Note that for the slightly more general deformation

λ =





λxx 0 λ
0 λyy 0
λzx 0 λzz



 ; n = (−λzxλyy, 0, λxxλyy) . (4.91)

then the minimum energy solution corresponds to a rotation of the elastomer
by 90◦.

Imposed λzx

This deformation is illustrated in Fig. 4.9 d). Whilst it is possible to use a very
general deformation tensor, here a lower triangular form is used [Allowing a λxz
component results in the elastomer rotating by 90◦ so that it is experiencing
an effective pure λxz deformation].

λ =





λxx 0 0
0 λyy 0
λ 0 λzz



 (4.92)

The director is given by

n = (−λλyy, 0, λxxλyy) . (4.93)

The volume conservation and layer spacing constraints are now given by

1 = λxxλyyλzz (4.94)

1 = λ2yy(λ
2
xx + λ2). (4.95)

These two constraints can be used to eliminate λyy and λzz from the free
energy density. The resulting expression for the free energy density is

f = 1
2µ

{

1 + λ2xx + λ2 +
rλ2

λ2xx
+

1

λ2xx + λ2

}

. (4.96)
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Whilst the equation resulting from minimising this equation w.r.t. λxx can be
solved analytically, it is a quartic in λ2xx so the solution is algebraically compli-
cated. For illustrative purposes a particular numerical solution is calculated
here, using the simplex method available in the NAG library (E04ccf). From

0 0.2 0.4 0.6 0.8 1
λ

zx

0.6

0.8

1

1.2

λ
xx

λ
yy

λ
zz

cos θ

Figure 4.11: The figure shows the three relaxed components
of the deformation tensor, and the cosine of the angle that the
director makes with the z axis as a function of imposed shear
λ = λzx, for the case of a side chain system with anisotropy
r = 2.3.

Fig. 4.11 it is clear that on shearing the system it contracts in the y direction
and extends in both the z and x directions to accommodate the rigid smectic
planes. An illustration of this is shown in Fig. 4.12.

a) b) c) d) e) f)

Figure 4.12: The figure illustrates the different stages of shear
of a sample with r = 2.0 for λzx taking the values: a) 0.1, b)
0.2, c) 0.3, d) 0.4, e) 0.5, and f) 0.6.

4.3.2 Fundamental deformations for infinite B

Of the deformations considered above only two are fundamental to the elas-
ticity of a smectic elastomer: the λxx and the λxz deformation. To illustrate
this point the above deformation, imposed λzx, is now decomposed into these
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two deformations plus a rotation.

λ =W ·D (4.97)

where

W =





cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ



 ; D =





1 0 λxz
0 1 0
0 0 1









λxx 0 0
0 1

λxx
0

0 0 1



 .

With these definitions it is found that the director orientation is given by

n = (sin γ, 0, cos γ), (4.98)

and the free energy density is

f = 1
2µ

(

1 + λ2xx +
1

λ2xx
+ rλ2xz

)

. (4.99)

To compare this system with the imposed λzx deformation considered above,
set tan γ = −λxz which results in the deformation tensor

λ =









λxx√
1+λ2

xz

0 0

0 1
λxx

0
λxxλxz√
1+λ2

xz

0
√

1 + λ2xz









. (4.100)

Since λzx is imposed in the reference frame, then λ obeys the relation

λ =
λxxλxz
√

1 + λ2xz
. (4.101)

We can use this relation to eliminate λxz and obtain the following deformation
tensor

λ =







√

λ2xx − λ2 0 0
0 1

λxx
0

λ 0 λxx√
λ2
xx−λ2






. (4.102)

An effective λxx is now defined α =
√

λ2xx − λ2 so as to compare with the
deformation of λzx imposed in the reference frame. The same form for the
free energy density is obtained, just as in Eq. (4.96)

f = 1
2µ

(

1 + α2 + λ2 +
1

α2 + λ2
+
λ2r

α2

)

. (4.103)

This shows that when B → ∞ there are only two fundamental deformations
namely a stretch perpendicular to the layer normal and a simple shear per-
pendicular to the layer normal.
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4.3.3 B < ∞
The same uniform deformations as §4.3.1 are now considered but this time
allowing for a finite layer modulus. The finite layer modulus results in a
threshold behaviour as when the elastomer is stretched parallel to the layer
normal, because a cross over from stretching the layer spacing to rotation of
the layers. In this section the microstructure associated with layer rotation
will not be considered. However, its effect on the elastic properties of the
material are small because of the low energy cost of the interfaces between
domains. The rotation of the layers combined with the microstructure (sim-
ilar to that observed in nematic elastomers) provides an explanation of the
Helfrich-Hurault effect observed in smectic LSCEs. Note that this is a dif-
ferent physical reason for the Helfrich-Hurault effect than in liquid smectics.
In liquid smectics the undulations in the layers occur because of a competi-
tion between bending the layers, penalised by the Frank elastic constants, and
keeping their spacing fixed. In liquid crystal elastomers the threshold is con-
trolled by the competition between the energy cost of stretching the layers and
shearing the elastomer – a rubber elastic effect. In the following subsections
the ratio of the layer modulus to the rubber modulus is denoted as: b = B

µ .

Imposed λzz

For the case of finite layer modulus, it is assumed that the deformation matrix
has the same form as for the infinite layer modulus case

λ =





λxx 0 0
0 λyy 0
λzx 0 λ



 . (4.104)

For a finite layer modulus the constraints are that of volume conservation

det(λ) = 1 = λxxλyyλ, (4.105)

and of no rotation of the layers with respect to the matrix

q = λ−T · q0. (4.106)

More care is required than in §4.3.1 when calculating the director as can no
longer simply write down the components from the cofactors. The director
must be normalised explicitly

n = (− λzx√
λ2
xx+λ2

zx

, 0, λxx√
λ2
xx+λ2

zx

). (4.107)

The free energy density for the system can now be written down, including
the new contribution from the finite layer modulus using the expression from
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Eq. (4.63) for d/d0.

f = 1
2µ







λ2xx +
1

λ2xxλ
2
+ λ2zx +

(λ2xx + rλ2zx)λ
2

λ2xx + λ2zx
+ b

(

λλxx
√

λ2xx + λ2zx
− 1

)2






,

where the volume conservation constraint has been used to eliminate λyy.
This expression can be minimized numerically, using the simplex algorithm,
for different values of b. The solution for the different components of the
deformation tensor for a particular b value is shown in Fig. 4.13. The figure
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Figure 4.13: An illustration of values of the deformation tensor
components for an imposed λzz for the case when b = 5 and
r = 2. The λzx component has an asymptote of 1√

λcr
for large

λzz.

(with a small b value for clarity) shows that there is a critical, threshold value
of the elongation λ = λcr when the layer rotation starts to occur. Shear
λzx starts with a singular edge and the transverse contraction λyy remains
constant. It is possible to guess an analytic solution to this model based on
the B → ∞ solution and the numerics above. The solution splits into two
parts: before and after the discontinuity. Before the layers start to rotate,
λzx = 0. The free energy density is given by

f = 1
2µ

{

λ2xx +
1

λ2xxλ
2
+ λ2 + b(λ− 1)2

}

. (4.108)

This free energy density has a minimum when λ2xx = 1
λ . Thus before the

layers start to rotate the material has Poisson ratios (12 ,
1
2) in the (x, y) di-

rections. The free energy density and the nominal stress for this minimum
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energy solution are given by

f = 1
2µ

{

2

λ
+ λ2 + b(λ− 1)2

}

(4.109)

σnom = µ

(

λ− 1

λ2

)

+B(λ− 1). (4.110)

When layer rotation starts at λcr, numerically it is clear that λyy = 1√
λcr

is

a constant. Starting from this assumption avoids having to minimise over λyy
and thereby simplifies the problem. After the transition occurs it follows that

λxx =
√
λcr
λ so that the material now has Poisson ratios (0, 1). Minimising the

free energy density w.r.t. λ2zx yields, after some simplification

0 = 1 +
(r − 1)λ4λcr

(λcr + λ2zxλ
2)2

+ b

[

λ3
√
λcr

(λcr + λ2zxλ
2)3/2

− λcrλ
4

(λcr + λ2zxλ
2)2

]

. (4.111)

Solution of this equation for λzx at first sight is complicated, however λzx only
appears in the following combination

p2 = λ2zx +
λcr
λ2
. (4.112)

The combination p is a function only of r − 1, b and λcr, that is f(r, b, λcr),
and obeys the equation

0 = p4 + (r − 1)λcr + b
(

p
√

λcr − λcr

)

. (4.113)

This is because Eq. (4.111) is a polynomial in p. At the critical value, λcr,
using the fact that λzx = 0 it follows that p = 1√

λcr
. From Eq. (4.113) the

following equation for the critical value of λcr can be obtained

λ3cr(r − b− 1) + bλ2cr + 1 = 0. (4.114)

This equation can be solved analytically by the general formula for cubic
equations. However it is more useful to analyse its limits. The first few terms
in the expansion for large b yield

λcr = 1 +
r

b
+ r(r − 3)

1

b2
+O

(

1

b3

)

. (4.115)

To obtain a threshold at all, the condition b > r − 1 must be obeyed. Below
this layer modulus there is no instability. From p2 = 1

λcr
in Eq. (4.112) the

induced shear is

λzx = ±
√

1

λcr
− λcr
λ2
. (4.116)
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Note that there are two solutions here corresponding to the two directions
that the director can rotate. On substituting the form of λzx back into the
free energy density the following expression is obtained

f = 1
2µ

{

2

λcr
+ λ2cr + r(λ2 − λ2cr) + b(λcr − 1)2

}

. (4.117)

From Eq. (4.109) and Eq. (4.117) the nominal stress can be calculated
using the equation: σnom = ∂f

∂λ . The results for the nominal stress are thus

σnom =

{

µ
(

λ− 1
λ2

)

+B(λ− 1) λ < λcr
µrλ λ > λcr

(4.118)

Note that the continuity of the nominal stress with λ can be used to derive
Eq. (4.114). From this result it is clear that the ratio of the two slopes is
related to λcr, which provides a convenient experimental check of the threshold
stretch. Thus for large B the ratio of the two slopes can be calculated, and
their ratio taken to obtain

rµ

B
≈ λcr − 1. (4.119)

Experimentally µ can be obtained from stretching the rubber in the layers,
yielding a modulus of E⊥ = 4µ, and thus obtain the anisotropy of the poly-
mers, r by combining these two results. An illustration of Eq. (4.118) is shown
in Fig. 4.14, again for the same small value of b.
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Figure 4.14: The figure illustrates the nominal stress for a
smectic elastomer stretched parallel to the layer normal, with
r = 2 and b = 5.

It is interesting to calculate the layer spacing of the system as a function
of the imposed stretch. The layer spacing is given by

d

d0
=

1

λyy
√

λ2xx + λ2zx
=

λλxx
√

λ2xx + λ2zx
. (4.120)
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Before layer rotation starts λzx = 0 and so the layer spacing increases as
d/d0 = λ. After layer rotation starts we have from the same expression d/d0 =
λcr. Thus after rotation of the layers starts their spacing remains fixed, and
the only cost in deforming the system is that of shearing the rubber. This
is because, as the layers rotate, the component of the force along the layers
remains constant.

The threshold behaviour shown here occurs even for very small values of
B. This is because the way in which the director deforms with the matrix
has been imposed. Physically this is correct for large B. As B is reduced this
constraint will become less rigidly enforced and the cross-links will be able to
move through one layer to the next. Thus the threshold behaviour predicted
for small B values (∼ µ) is unlikely to be correct in practise.

To check the trial solution outlined above and to ensure there are no other
solutions, all the solutions to the minimisation of the free energy are now
calculated. To factorise the free energy, a change of variables is employed:
the variables λxx and tan φ = − λzx

λxx
are used to express the free energy. The

expression for the free energy density is then given by

f = 1
2µ

{

λ2xx +
1

λ2xxλ
2
+ λ2xx tan

2 φ+ (cos2 φ+ r sin2 φ)λ2 + b(λ cos φ− 1)2
}

.

Minimising this equation w.r.t. λxx yields

0 = 2λxx

(

1− 1

λ2λ4xx
+ tan2 φ

)

. (4.121)

This equation has the solutions λ2xx = 0,± cos φ
λ . The only physical solution

is λ2xx = cos φ
λ . Minimising the free energy w.r.t. φ and substituting for λxx

yields

0 =
sinφ

λ cos2 φ
+ λ2(r − 1) sin φ cosφ− bλ(λ sinφ cosφ− sinφ) (4.122)

This equation can be factorised using the solutions previously calculated as
follows

λ sinφ

(

cosφ− λcr
λ

)(

λ2(r − 1− b) cos2 φ− λ

λ2cr
cosφ− 1

λcr

)

= 0 (4.123)

provided that Eq. (4.114) is obeyed. Thus the previous solution (a combina-
tion of the first and second factors) is a minimum. The third factor can be
shown to be real only if λ2crb < −3/4, and thus is never a relevant solution
in this case. The first solution is thus a minimum in the free energy and the
only solution.
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Imposed λxx

A deformation matrix of the form

λ =





λ 0 λxz
0 λyy 0
0 0 λzz



 (4.124)

will be used here. A λzx element is not included here because it creates
additional, but physically uninteresting rotating solutions. The rotation about
the y axis would take the layers into the stretch direction (the x direction)
and would be energetically unfavourable. A λxz component is included here
because from the the equivalent experiment with a nematic elastomer it is
expected to be non-zero. However since it does not facilitate layer rotation this
element will turn out to be zero. This deformation tensor can be substituted
into the free energy expression and the volume conservation constraint used
to eliminate λzz. The resulting free energy density expression is given by

f = 1
2µ

{

λ2yy + rλ2xz + λ2 +
1

λ2yyλ
2
+ b

(

1

λyyλ
− 1

)2
}

, (4.125)

This free energy density has only a few occurrences of λxz so it can be easily
minimized w.r.t. λxz yielding λxz = 0

For this deformation, it is instructive to calculate the Poisson ratios in the
(y, z) directions for different values of b. Starting from Eq. (4.125) we make
the substitutions λzx = 0 and λxz = 0. The resulting free energy density is
given by

f = 1
2µ

{

λ2yy + λ2 +
1

λ2yyλ
2
+ b

(

1

λyyλ
− 1

)2
}

(4.126)

Minimisation of this free energy w.r.t. λyy results in the equation

λ2λ4yy − 1 = b(1− λλyy) (4.127)

From this equation it is clear that there are two limits of small and large
b corresponding to λyy = 1

λ for large b and λyy = 1√
λ

for small b. The

material with a small b value is still a smectic in the sense that the director
is constrained to lie along the layer normal. To calculate the Poisson ratios
from this expression a small strain expansion is used

λyy = 1 + ǫ (4.128)

λ = 1 + ω. (4.129)

The resulting expression to first order in ω and ǫ is given by

4ǫ+ 2ω + b(ǫ+ ω) = 0. (4.130)
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The Poisson ratio in the y direction, ν, can then be identified as ν = − ǫ
ω . In

terms of b the Poisson ratio is

ν =
2 + b

4 + b
. (4.131)

The cross over from Poisson ratios (z, y) = (0, 1) to (1/2, 1/2) is thus relatively
slow. However, it is clear that for b ∼ 60, as found in some experimental
samples, the material is firmly in the (0, 1) class.

Imposed λxz

Again, the deformation tensor given in Eq. (4.86) is considered. The λyy
component can be eliminated by using the volume conservation constraint.
The resulting free energy density expression is

f = 1
2µ

{

λ2xx +
1

λ2xxλ
2
zz

+ λ2zz + rλ2 + b (λzz − 1)2
}

(4.132)

This free energy density does not couple λ and λzz and so the imposed shear
cannot affect λzz. When this is minimized over λxx and λzz the solution
λzz = λxx = 1 is obtained, as in the more constrained case.

Imposed λzx

In this case the deformation tensor given in Eq. (4.92) used. This deformation
matrix does not permit body rotation of the rubber and is an experimentally
reasonable deformation. Eliminating the component λyy using the volume
conservation constraint (λxxλyyλzz = 1) results in the following free energy
density

f = 1
2µ

{

λ2xx +
1

λ2xxλ
2
zz

+ λ2 + rλ2zz +
λ2zz(λ

2
xx + rλ2)

λ2xx + λ2

+b

(

λxxλzz
√

λ2xx + λ2
− 1

)2






. (4.133)

This minimisation can be solved numerically using the simplex algorithm. A
typical solution is illustrated in Fig. 4.15, together with the layer spacing for
the same solution.

In this deformation the layer spacing is being strongly compressed. This
is borne out by the layer spacing plot above. Even for very large b the layer
spacing eventually yields and begins to decrease.
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Figure 4.15: An example of the minimisation of the free en-
ergy in the case of imposed λzx. a) The deformation tensor
components, b) the layer spacing. The example is for the case
b = 5, r = 3.

4.3.4 Fundamental deformations for finite B

Note that where as in §4.3.2 the deformation could be broken up into two
deformations, an imposed λxx and an imposed λxz plus a rotation, this is not
possible here. In this case we require a third deformation: a stretch along the
layer normal (λzz). The decomposition is now illustrated by the imposed λzx
case as considered above.

λ =W ·D (4.134)

where we define

W =





cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ



 ;D =





1 0 λxz
0 1 0
0 0 1









λxx 0 0
0 1

λzzλxx
0

0 0 1
λzz



 .

The deformation matrix is thus

λ =





λxx cos γ 0 λzz(λxz cos γ + sin γ)
0 1

λxxλzz
0

−λxx sin γ 0 λzz(cos γ − λxz sin γ)



 . (4.135)

From this deformation matrix we can calculate the director

λ−T · n0 =

(

sin γ

λzz
, 0,

cos γ

λzz

)

(4.136)

Note that in this case care must be taken to normalise the director. The
rotation required to reduce this deformation to the form of an imposed λzx
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deformation is tan γ = −λxz. The following deformation matrix is then ob-
tained

λ =





α 0 0
0 1

αβ 0

λ 0 β



 (4.137)

where

α =
√

λ2xx − λ2 ; β =
λxxλzz

√

λ2xx − λ2
; λ =

λxxλxz
√

1 + λ2xz
. (4.138)

The free energy is then of the same form as Eq. (4.133) and we have the
decomposition of the mode.

A decomposition can be performed on the imposed λzz deformation. The
starting point is again Eq. (4.135), but this time setting tan γ = −λxz. The
resulting matrix is then compared to that of imposed λzz so that the identifi-
cation λ = λzz

√

1 + λ2xz can be made. This decomposition gives a geometric
reason for the threshold observed when λzz is imposed. Suppose that the
elastomer deforms with only the λzz component. The free energy density is
then

fzz =
1
2B(λ− 1)2. (4.139)

Alternatively the sample could deform by a shear λxz, which leaves the layer
spacing unchanged, and then rotate to accomplish the same λzz value. In this
case the free energy density is

fxz =
1
2µrλ

2
xz =

1
2µr(λ

2 − 1) . (4.140)

Comparing these two energy densities for small ǫ where λ = 1 + ǫ, it is clear
that that fzz ∼ 1

2Bǫ
2 < fxz ∼ µrǫ, provided that ǫ < 2µr/B. The latter

energy is first order rather than second order in the strain and explains why
it is so costly and unphysical (it is second order finally where it intercedes
after λcr). This decomposition also shows that an imposed λzz is equivalent
to an imposed λxz deformation plus a rotation and a f ixed stretch along the
layer normal such that d/d0 = λcr. The decomposition explains why the
modulus of the sample after the threshold is the same as that for an imposed
λxz deformation.

4.4 Comparison with experiment

The model outlined in §4.2 can be compared with numerous pieces of ex-
perimental data. Here the Poisson ratios, the elastic moduli and the x-ray
scattering are considered.
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4.4.1 Experimentally measured elastic properties

Firstly consider the Poisson ratios. When stretched in plane, the model con-
sidered here produces, for large b, Poisson ratios (0, 1) which are observed
experimentally in [63]. When stretched parallel to the layer normal the ob-
served Poisson ratios are (1/2, 1/2). The model is consistent with this before
the threshold occurs, and layer rotation begins. After threshold the model
predicts Poisson ratios of (1, 0) which are not the same as those observed ex-
perimentally. This is because the sample, which is cylindrically symmetric
about the stretch axis, maintains its cylindrical symmetry by forming mi-
crostructure consisting of many small domains. This point is crucial in the
analysis of the x-ray data.

In the experimental study of Nishikawa and Finkelmann [66] the elastic
moduli of a smectic elastomer were measured. The sample used in their exper-
iments was found to have an anisotropy of r ≈ 1.6 from swelling anisotropy
measurements. The threshold strain was found to be ǫc ≈ 3% with a cor-
responding stress of σN ≈ 1.12 × 105Pa. The modulus before threshold
was Ebefore = 3.2 × 106 Pa, and the modulus after threshold was Eafter =
1.1 × 105Pa. Although they comment that after threshold the modulus is
similar to the in-plane modulus they do not give a value for the in-plane mod-
ulus. According to the theory outlined above from the reported moduli we
expect ǫc ≈ Eafter

Ebefore
≈ 3.4% which is extremely close to their reported threshold

strain given that the transition is not totally sharp when observed experimen-
tally. From the values of r and Eafter we would expect an in plane modulus of
4Eafter

r ≈ 2.75× 105Pa. Fig. 4.16 shows a fit of this theory to the elastic data
of [66].

The fit to the experimental data is good given the small number of param-
eters in the model for such a complicated material.

4.4.2 X-ray scattering

Reference [66] also contains x-ray data for a smectic elastomer as it is being
stretched along the layer normal. It is observed that the x-ray peaks corre-
sponding to the layers rotate as the sample is stretched. There is also a sharp
drop in the intensity of these peaks which was attributed to melting of the
smectic phase to the nematic or isotropic phase by Nishikawa and Finkelmann.

Fig. 4.17 below compares the calculated orientation of the director with
the experiment of [66]. As is clear from the figure the rotation of the smectic
layers is in good agreement with the model discussed here.

The above theory does not predict that the smectic phase melts on stretch-
ing. The energy cost to perform this melting can be calculated as follows: the
entropy change found in [66] for the smectic-isotropic phase transition was
∆S = 2.4 × 10−2JK−1g−1. Thus the cost for melting at 300K for a sample
with density ρ ∼ 1g cm−3 is T∆Sρ ∼ 7.2 × 106 J m−3. To pay the cost of
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Figure 4.16: The figure shows a fit of the theory to the data
of [66]. The values used for the fit were: B = 3.2× 106Pa and
rµ = 1.1 × 105Pa.
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Figure 4.17: Comparison of the calculated orientation of the
director (dotted line) with the experimental points of [66] (cir-
cular points).
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melting, an energy density of 1
2B(λcr − 1)2 ∼ 8 × 104J/m3 is available from

the input elastic energy and is clearly rather little.

An alternative explanation that is consistent with the above proposed
model of the smectic elastomer is the formation of microstructure. The break
up of the sample into regions of tilted domains is cylindrically symmetric
around the stretch axis. The regions that are tilted toward the x-ray beam
no longer meet the Bragg condition for diffraction, and as a result do not
contribute intensity to the scattered beam. This loss of intensity is inversely
proportional to sinφ where φ is the angle through which the smectic layers
have tilted (Fig. 4.18).

n0

φ

n

k

Figure 4.18: The figure illustrates the incident beam of x-
rays, wavevector k, impinging on a stretched smectic elastomer
sample. The layer normal in the sample is distributed on the
ring shown. Only a small range of layer normals that are
distributed around the Bragg condition can contribute to the
scattering. This contribution is inversely proportional to the
circumference of the ring i.e. to 1

sinφ .

The fit of this prediction to the experimental data given in [66] for the ratio
of the small angle scattering to the large angle scattering is given in Fig. 4.19.
The finite intensity at small angles is recovered because the finite resolution
of the detector means that at small φ all the layer normals are detected.

The formation of microstructure is also consistent with the observed broad-
ening of the wide angle scattering, and also with the the opacity of the sample
after the critical strain, and the elastic moduli of the sample. The formation
of microstructure and the break up of the sample into domains on stretching
is analogous to the formation of stripes in the nematic case [75, 76]. This
problem is analogous to the formation of microstructure in the phase transi-
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Figure 4.19: The figure shows the experimental data of [66]
(◦) with two fitting curves. The solid curve corresponds to
0.3
sinφ which does not take into account the resolution of the

detector, and the dashed curve corresponds to 9
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which attempts to account for this.

tion from austenite to martensite, and has been studied using more advanced
techniques which should be applicable to the smectic elastomer [77–80].

4.5 Conclusions

A large deformation model of a smectic elastomer can be formulated, founded
on a microscopic model of the chains that comprise the elastomer. Deep in
the smectic phase the cross-link points are confined to sit between the smectic
layers. This restriction on where the cross-link points can lie results in a rigid
coupling between the affine deformations of the matrix and the smectic layer
normal.

The threshold behaviour observed when the smectic elastomer is stretched
parallel to the layer normal can be explained in terms of this model. The
cloudiness of the sample is due to microstructure formation in the bulk which
parallels the formation of stripes in nematic elastomers. In the case of the
nematic elastomer, the sample clears once the director is fully rotated. This is
not possible for a smectic elastomer. The experimental data fits well with this
model, including the loss of x-ray intensity as a result of the microstructure
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formation in the smectic, and the opacity of the sample observed after the
critical strain.





Chapter Five

Soft elasticity of smectic
elastomers

T
he subject of this chapter is soft modes in smectic elastomers. First
a discussion of some of the aspects of soft modes in nematic elastomers is

undertaken to provide an introduction and some background. The soft modes
of two types of smectic elastomers — biaxial smectic A (SmA) and smectic C
(SmC) — are then analysed using a Gaussian model, with an added constraint
ensuring that the spacing between the layers remains fixed (see chapter 4). The
geometries under which smectic elastomers can exhibit a soft elastic response
are explored, both in general terms and by giving specific examples.

5.1 Introduction

5.1.1 Biaxial liquid crystals

The mesogens that make up biaxial liquid crystalline materials do not have
continuous rotational symmetry; they are analogous to books rather than
rods. Consequently they can show uniaxial order and biaxial order; like books
stacked together. Although biaxial nematic phases are rare, examples of sev-
eral lyotropic biaxial nematic liquid crystalline phases have been observed
[81, 82]. It was only recently that thermotropic phases were reported in bent-
core molecules [83] after x-ray diffraction confirmed that the phase was a bi-
axial nematic. This conclusion has now been confirmed by observations from
conoscopy and texture [84]. It is thought that biaxial phases will be of tech-
nological importance, in displays for example, because of the faster switching
time offered by the secondary alignment axis.

119
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5.1.2 Smectic C liquid crystals

The SmC phase of a liquid crystal can be described as a two-dimensional liq-
uid in each layer, but with the molecules in the layer tilted with respect to
the layer normal (Fig. 5.1). As a consequence these materials are electrically,
magnetically and optically biaxial. For optically inactive molecules, the align-
ment in each layer is the same. However, if the molecules are optically active
then the direction of tilt precesses around the z-axis from one layer to the next
and a helical configuration results, called smectic C⋆ (SmC⋆). R. B. Meyer
pointed out that whilst the SmC phase has an inversion centre, the SmC⋆

phase does not, and consequently can be ferroelectric [85].

kn

c

θ

Figure 5.1: An illustration of the SmC phase, together with
a diagram indicating the relationship between the director, n,
the layer normal, k and the tilt angle θ. The vector c is the
component of n perpendicular to k.

5.1.3 Soft elasticity in nematic elastomers

Nematic elastomers exhibit a range of unusual properties. Perhaps the most
striking is that of soft elasticity i.e. deformation at no elastic cost. These soft
elastic modes can be understood from several different view points; from gen-
eral symmetry arguments [86], from continuum models, and from particular
microscopic models based on anisotropic chain conformations [32]. The oc-
currence of soft modes is independent of the particular description used, since
they occur in any model with the same symmetries as a nematic elastomer
[87].

The polymer chains that make up the nematic elastomer can be modelled
using an anisotropic Gaussian distribution provided that the chains are long
enough. The initial probability distribution of the end-to-end spans is then
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given by

P0(R0, ℓ0) =

(

2πL

3det[ℓ0]

)−1/2

exp

{−3

2L
R0 · ℓ−1

0 ·R0

}

, (5.1)

where R0 is the end-to-end span and L the arc length. The tensor ℓ0 defines

the effective step lengths of the polymer at the moment of cross-linking

〈R0αR0β〉P0 = 1
3Lℓ0αβ . (5.2)

The step anisotropy, ℓ0, is a function of the nematic order parameter, Q0. The

form of this function depends on the model of the polymer chain used and the
coupling between the side groups and the polymer backbone. The particular
model of this coupling is unimportant for obtaining qualitative features of the
elastomer.

On cross-linking the elastomer consists of strands between cross-links all of
arc length L, with end-to-end vectors drawn from the distribution P0(R0, ℓ0).

The elastic properties can then be found by calculating the average properties
of the strands, with the assumption that the cross-link points deform affinely

R = λ ·R0. (5.3)

This is approximately true for individual chains. It is correct on average
and is exact in the limit of infinite cross-link point functionality [1]. For
deformations such that |λ| < (L/ℓ0)

1/2 the molecular configurations are still
anisotropic Gaussians, described by a new step anisotropy ℓ. The elastic free

energy per strand of a distorted state when quench averaged over R0 is

−〈lnP (R, ℓ)〉P0 = 1
2

[

Tr
(

λ · ℓ0 · λT · ℓ−1
)

− ln
(

det[ℓ0 · ℓ−1]
)]

. (5.4)

Minimising the free energy expression obtained in Eq. (5.4) w.r.t. λ with the

constraint det[λ] = 1 yields the following expression

λ · ℓ0 · λT = ℓ. (5.5)

A general solution to Eq. (5.5) is given by

λ = ℓ1/2 ·W · ℓ−1/2
0 , (5.6)

where W is a general rotation matrix. It can be shown that these modes

comprise the long-wavelength limits of the Goldstone modes for this system,
i.e. they are the analogs of spin wave excitations in ferromagnetic systems,
or director waves in a nematic liquid crystal [87]. These zero energy, long
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wavelength deformations arise because of the broken-symmetry of the nematic
elastomer. This expression also describes the soft modes for biaxial nematic
elastomers [88].

For the case of a uniaxial nematic elastomer Eq. (5.6) can be rearranged
into the form

λ =W · ℓ1/2
n′ · ℓ−1/2

0 (5.7)

where n′ is a unit vector on the surface of a sphere and n = W · n′. In this

form it is clear that the soft modes available to a nematic elastomer can be
found by selecting n′ from the surface of a sphere, and then carrying out a
general rotation, W (i.e. n′ defines the shape of the body which can then be

rotated).

For the case of a biaxial nematic elastomer the same rearrangement can be
carried out, but this time after the choice of n′ has been made, the position of
the secondary axis can be selected from any point on a specified great circle.

Soft modes in biaxial nematics

As pointed out in §5.1.1 biaxial liquid crystalline phases are rare. However
biaxial nematic phases [89] biaxial smectic A phases [90] have been found in
liquid crystalline polymers and in principle it should be possible to make a
biaxial nematic or biaxial SmA liquid crystal elastomer. The properties of a
biaxial phase must necessarily be described by biaxial tensors, and the case of
the shape tensor of a biaxial polymer is no different. Suppose that the shape
tensor has principal axes l, n and m which are orthogonal and normalised.
The shape tensor can be expressed as

ℓ = ℓ‖nn
T + ℓ1mmT + ℓ2ll

T (5.8)

= δ + (r − 1)nnT + p
2mmT − p

2 ll
T , (5.9)

where p = (ℓ1 − ℓ2)/ℓ⊥ and ℓ⊥ = 1
2(ℓ1 + ℓ2). In biaxial nematics rotations

of the shape tensor about the principal director, n are significant, whereas in
a uniaxial nematic they are not. An explicit example of a soft mode arising
from this sort of rotation is presented in [88]. This mode is given here as it
will prove useful in our discussion of soft modes in smectic A elastomers. For

a soft mode with angle of rotation φ about n0 ≡ n = z of the form ℓ
1/2
φ · ℓ−1/2

0

the following deformation tensor is obtained

λ =





1− (1− 1/
√
r⊥) sin2 φ (1−√

r⊥) sinφ cosφ 0
(1/

√
r⊥ − 1) sinφ cos φ 1 + (

√
r⊥ − 1) sin2 φ 0

0 0 1



 (5.10)

where r⊥ = ℓ1/ℓ2 is a material parameter expressing the degree of biaxiality.
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In SmA elastomers the layers break the rotational symmetry of the state so
that only rotations of the matrix points about the layer normal leaves the free
energy unchanged. It will be shown that since the director has no component
in the layers there can be no soft modes in SmA elastomers, except for the
case of a biaxial order parameter.

5.1.4 Experimental literature on smectic C elastomers

Several investigations on the preparation of monodomains from SmC elas-
tomers have been performed. The principles of aligning the SmC elastomer
are the same as those of a nematic elastomer, i.e. cross-linking under a load.
However, aligning smectic elastomers, and particularly SmC elastomers, is
more involved because both the director and the layers must be aligned.

An investigation by Semmler and Finkelmann [91] into aligning SmC elas-
tomers by found some success by adopting a two stage process of non-collinear
stretches. On straining a polydomain chiral SmC sample by λ = 1.6 the sam-
ple remains opaque, indicating that there is no director alignment. X-ray
scattering shows a small degree of alignment, which does not improve on an-
nealing. A new approach was adopted whereby the SmC sample was first
loaded a small amount and then swollen with toluene, until it reached an
isotropic state. It was then gradually deswollen and reformed into the smectic
state whilst under load. The sample shows good director alignment, but the
layers can have any orientation on the surface of a cone. The resulting sample
was centrosymmetric. A second stretch is then applied at an angle of 90◦ − θ
where θ is the tilt angle. As a result the layers rotate around so that the stretch
direction is contained within the layer. The result is a non-centrosymmetric
monodomain. This alignment can be locked in by another cross-linking stage.

An alternative approach of Hiraoka and Finkelmann [92, 93] was to use
a mechanical shear field. The same procedure as described above was used
to obtain a uniaxially aligned director field. The sample was then sheared
through an angle equal to the tilt angle of the director w.r.t. the layers
in the SmC phase. Again a well aligned monodomain, with aligned layers
is obtained. This technique of making monodomains has recently made it
possible to observe spontaneous deformations in the SmC phase [94].

SmC⋆ elastomers may also prove to be of great technological significance,
for example they possess the correct phase symmetry to exhibit second har-
monic generation, that is generate light at a frequency of twice that of the
incident light. This has been the subject of experimental research [95]. Their
piezoelectric properties have also been studied experimentally [96, 97]. This
may prove to be significant because whilst conventional piezoelectric mate-
rials can only achieve small strains, rubbery materials could achieve much
larger strains. The ferroelectric properties of these materials have also been
intensively studied [98–102]. As a result of these ferroelectric properties SmC
elastomers show giant electristriction effects (analogous to piezoelectricity but
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with strain proportional to the square of the applied electric field) [103]. Poly-
domain SmC elastomers have also been shown to exhibit shape memory which
may also prove to be important technologically [104].

5.2 Soft modes of biaxial smectic A elastomers

5.2.1 Model biaxial smectic A elastomer

The model of a biaxial SmA used here is an extension of the model presented
in chapter 4. It is assumed that there is no interaction between the formation
of the layers and the secondary alignment axis of the mesogens. As a result
the required free energy density is given by

f = 1
2µTr

[

λ · ℓ0 · λT · ℓ−1
]

+ 1
2B (d/d0 − 1)2 (5.11)

where both ℓ0 and ℓ are now biaxial, with principal axes n, m and l. The

primary alignment axes of the mesogens, n is identified with the smectic layer
normal, but the secondary alignment axis is free to rotate in the plane of the
layer to rotate in the plane of the layers. Consequently, the soft modes of this
biaxial SmA arise because of the freedom of the secondary alignment axis. If
we assume that the layers move affinely with the matrix, then it follows that
the layer spacing is given by

d

d0
=

1

|λ−T · n0|
, (5.12)

where n0 is the initial direction of the primary axis of alignment.

5.2.2 General form of soft modes in biaxial SmA elastomers

Since the model of biaxial SmA elastomer considered here is based on that of
a nematic elastomer, the starting point used is the general form of soft modes
in nematic elastomers

λ = ℓ1/2 ·W · ℓ−1/2
0 , (5.13)

whereW is a general rotation matrix, ℓ0 is the initial biaxial anisotropy tensor

and ℓ is the current anisotropy tensor of the polymer. A general deformation

could in principle change the layer spacing. However for soft modes the layer
spacing must remain fixed. This constraint can be expressed via Eq. (5.12) as

nT
0 · λ−1 · λ−T · n0 = 1. (5.14)

Inserting the general form of a soft mode Eq. (5.13) into the layer spacing
constraint Eq. (5.14) yields the following equation

1

r
= nT

0 ·WT · ℓ−1 ·W · n0. (5.15)
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For uniaxial SmA, the only solution to this equation is n =W ·n0 because the

quadric surface associated with ℓ−1 only has the correct width at one point.

Thus there is no freedom for the director and no soft modes in uniaxial SmA
elastomers except for pure rotations. This is because if the layer normal n is
moved by any deformation other than a rotation then the layer spacing will be
changed and the resulting state will be higher in energy. However, in biaxial
SmA elastomers the secondary alignment axis means that there is still enough
freedom for a soft mode to exist.

The soft modes can be decomposed into their component rotations to
gain a better understanding of them as follows. First we write the general
deformation matrix as

W =WR ·Wn0 , (5.16)

where Wn0 is a rotation about n0 and n =WR · n0. Using this in Eq. (5.13)

results in the following expression for the soft mode:

λ = ℓ1/2 ·WR ·Wn0 · ℓ
−1/2
0 (5.17)

= WR ·Wn0 ·
[

ℓ
1/2
n0,m′,l′ · ℓ

−1/2
0

]

. (5.18)

The factor in square brackets here is a familiar soft mode from the example
given in §5.1.3. Thus all soft modes in biaxial SmA elastomers can be decom-
posed into a rotation of the soft mode that has the primary alignment axis
(i.e. n) fixed and a secondary rotation axis displaced from its initial position.

5.2.3 Particular example of a soft mode in a SmA elastomer

For later comparison with the soft modes of an SmC elastomer, the soft mode
associated with an imposed λxx component is now presented. This mode will
have a fixed primary alignment direction, n0, but will have a mobile secondary
alignment direction, m. Fig. 5.2 shows an illustration of this mode. In the
centre of the diagram the secondary alignment axis, m is depicted. Along the
outside of the diagram the shape of the biaxial SmA elastomer is illustrated
as viewed from above.

5.3 Soft modes of smectic C elastomers

5.3.1 Model smectic C elastomer free energy

The model of an SmC elastomer described here is again an extension of the
SmA elastomer model presented in chapter 4. It is based on a constrained
version of the nematic elastomer. Whilst it is a specific microscopic model of
the SmC elastomer phase, its features are more general and the soft modes
explored here are also present in other, continuum, approaches [105].
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Figure 5.2: An illustration of the soft mode of a biaxial smectic
A elastomer. In this case the layer normal is out of the page
and the secondary director, m, is shown in the centre of the
diagram. The m axis rotates by φ = 30◦ from one image to
the next and an anisotropy of r⊥ = 2 was chosen.

Note that on undergoing a phase change from the nematic to the smectic
state, the degree of anisotropy of the polymer, r, may be changed because of
the additional penalty of the polymer chains for crossing the smectic layers.
Whilst in the SmA this effect can be roughly modelled by decreasing the
value of r for prolate chains on transition to the smectic phase, its effect for
SmC elastomers is not quite so simple. The uniaxial tensor representing the
polymer shape in the nematic state is compressed along the layer normal,
which is not along one of the principal axes. The shape anisotropy tensor is
thus biaxial. However, here it is modelled as uniaxial for simplicity. The novel
soft elasticity arises because of the biaxial arrangement of ℓ about the layer

normal. The same qualitative behaviour is expected for a truly biaxial ℓ as

that generated by a uniaxial ℓ constrained to be tilted at a fixed angle to the

layer normal.

The elastic free energy terms and the smectic layer modulus terms result
in the following free energy expression

f = 1
2µTr

[

λ · ℓ0 · λT · ℓ−1
]

+ 1
2B

(

d

d0
− 1

)2

. (5.19)

where B is the modulus associated with stretching the layers, d is the current
layer spacing and d0 is the initial layer spacing. The expression for the layer
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spacing is given by
d

d0
=

1

|λ−T · k0|
, (5.20)

where k0 is the initial position of the layer normal in the solid (since it is no
longer identical to n0) and λ

−T denotes the inverse transpose of the deforma-

tion matrix.

The director is made up of two parts, k parallel to the layer normal, and
c perpendicular to the layer normal (k · c = 0). Since the director is tilted at
an angle θ to the layer normal (see Fig. 5.1) the following expression holds

n = k cos θ + c sin θ. (5.21)

Another term in this model penalising the tilt of the director away from making
angle θ with the layer normal could be included. However, since the main
concern here is soft modes, deviation from tilt θ with any energy cost would
remove softness during deformation. Consequently, this term is not included
here, and the tilt angle simply regarded as being fixed. In any event, away
from the SmA → SmC transition it is expected that the associated modulus
is very high.

5.3.2 The general form of soft modes

Since the model of SmC elastomers used here is based on that of a nematic
elastomer, the starting point used is the general form of soft modes in nematic
elastomers Eq. (5.13), but must also obey the layer constraint Eq. (5.20). The
deformation tensor must obey

kT
0 · λ−1 · λ−T · k0 = 1, (5.22)

i.e. constancy of layer spacing must be rigidly obeyed.

It is convenient to introduce a new auxiliary vector, w0 = ℓ
1/2
0 · k0. The

vectors w0, n0 and k0 all lie in the same plane with w0 between n0 and k0.
This is clear from the expression

w0 = ℓ
1/2
0 · k0 = k0 + (

√
r − 1) cos θn0 , (5.23)

which can be obtained by using ℓ
1/2
0 = (

√
r − 1)n0n

T
0 + δ. Note that the

modulus of w0 is not unity but rather w2
0 = 1 + (r − 1) cos2 θ > 1 for r > 1.

Substituting the general soft mode Eq. (5.13) into the layer spacing con-
straint, Eq. (5.22), and using w0, one obtains

wT
0 ·W T · ℓ−1

n ·W ·w0 = 1 (5.24)
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Substituting in the tensor ℓ−1
n = (1r − 1)nnT + δ reduces the above equation

to

(W ·w0)
T · n = ±√

r cos θ. (5.25)

That is, Eq. (5.25) is the equation of two planes that the tip of the director n

sits on. They are a distance ±1/
(

1 + 1
r tan

2 θ
)1/2

from the origin, and with
normal vector along the W ·w0 direction. Additionally the director is a unit

vector and thus the allowed directors n after distortion sit on the intersection
of the planes with the unit sphere n · n = 1. These circles of intersection are
always guaranteed since the distance of the planes from the origin is less than
unity.

The orientation of the layer normal can also be calculated. Since it deforms
affinely with the matrix then it is given by

k =
λ−T · k0

|λ−T · k0|
→ λ−T · k0, (5.26)

the simplification occurring because the layer spacing is fixed, that is d/d0 = 1
which follows from the fixed layer spacing of Eq. (5.25). When consider-
ing a particular soft deformation constructed by choosing a particular W in

Eq. (5.13), the above determines the choice of W to achieve a desired n and

k. Proceed by inserting a soft λ−T into Eq. (5.26) to determine the new k.

It is λ−T = ℓ
−1/2
n ·W · ℓ1/20 , on inverting and transposing. The normal then

becomes k = ℓ
−1/2
n ·W ·w0. Multiplying both sides from the left by ℓ

1/2
n , and

using the explicit form for ℓ
1/2
n and recalling n · k = cos θ, one obtains

W ·w0 = k+ (
√
r − 1) cos θn, (5.27)

Thus the three vectors W ·w0, k and n obey a the relation of the same form as

Eq. (5.23). This motivates the definition of a new auxiliary vectorW ·w0 = w.

The allowed soft modes correspond to the points where the two planes
defined in Eq. (5.25) intersect a unit sphere. To analyse the soft modes first
the case without W is studied, followed by the more general case of those

modes including a matrix W .

Geometrical interpretation of soft modes of the form ℓ
1/2
n · ℓ−1/2

0

The algebraically simplest (but certainly not physically simplest) soft modes
in an SmC elastomer are those without a W matrix. In this case the final

director must lie on the intersection of the unit sphere and the planes of
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Eq. (5.25)). An illustration of this is shown in Fig. 5.3. The figure shows
the initial director n0 and the initial layer normal k0 and two circles on the
surface of the sphere, corresponding to the final orientation of the director n
and layer normal k, that obey the layer constraint. Note that not all final

w0

n0

0k

k

n

Figure 5.3: An illustration of the director orientations that
satisfy the layer constraint.

positions of the director are possible with soft modes of this form. For n not
on the circle of Fig. 5.3, an appropriate W must be included such that the

required final director position still obeys the layer constraint.

Geometrical interpretation of general soft modes of the form

ℓ
1/2
n ·W · ℓ−1/2

0

To construct a soft mode that obeys the layer constraint with the director in
the final position n requires the inclusion of an additional matrix W . The

general soft mode can be re-expressed just as in Eq. (5.7) and Eq. (5.18)

λ = W · ℓ1/2
n′ · ℓ−1/2

0 . A fictitious director n′ defined by WT · n = n′ plays

the role of n in the simple soft mode of Fig. 5.3. The rotation matrix can
then be broken down into two successive rotations , W =WR ·Ww0(ξ) where

the latter is a rotation by ξ about w0 and takes n′ to n0, and WR takes n0

to n. Specifically WT
R · n = n0 and WT

w0
.n0 = n′ and one explicitly sees

ℓ
1/2
n′ =WT

w0
·WT

R · ℓ1/2n ·WR ·Ww0 . The power of the method is that λ is now

λ =WR ·Ww0 (ξ) · ℓ
1/2
n′ · ℓ−1/2

0 . (5.28)
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where the soft mode ℓ
−1/2
n′ · ℓ1/20 is parametrised by the angle ξ and is indepen-

dent of WR which can freely be set in order to obtain whatever final director

is desired, that is n = WR · n0. This general, final director is not confined

to the circle about w0, see Fig. 5.4 a) and b) for an illustration of the pro-
cedure. Having decided where the final director is to point, one then applies

a)

w0

n0

k0
ξ n’

b)

n0

R

n

Figure 5.4: a) shows the first stage of the process: a rotation
about w0, b) shows the second stage: a general rotation about
the axis R.

the body rotation WR ·Ww0 (ξ) to the softly deformed sample to complete

the deformation Eq. (5.28).
All of the rotations can be separated out of the soft mode leaving just a

symmetric deformation by using the polar decomposition theorem

λ = ℓ
1/2
n′ · ℓ−1/2

0 = U · S, (5.29)

where U is a rotation matrix and S is a symmetric matrix. The rotation axis

for this decomposition must be in the n′ ∧ n0 direction. This information can
be used to construct UT · λ and demand that it is symmetric to find S. The

resulting rotation angle is given by

tanα =
(1−√

r)2n0 · n′√1− (n0 · n′)2

(1 + r)− (n0 · n′)2(1−√
r)2

(5.30)

Now a particular example of Eq. (5.28) is considered. Here rigid clamping
constraints are not included so there is no formation of microstructure.

5.3.3 Example: Imposed λyy

To illustrate the soft modes an elongation in any direction could be imposed,
provided the director has scope to rotate into that direction and thereby to
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extend the sample. This excludes stretches parallel to n0. An elongation
perpendicular to the layer normal is particularly simple because it does not
induce the layer normal to rotate.

An extension in the y direction is imposed on an elastomer with its layer
normal in the z direction and the in-plane component of the director in the x

direction, i.e. c = x initially. The deformation matrix will be of the form

λ =





λxx 0 λxz
λyx λyy λyz
0 0 λzz



 , (5.31)

where the components λxy and λzy are not included. This is because these
components deform the sample by translating the y faces of the sample in
the ±x and ±z directions. Any small y forces associated with the yy elon-
gation would generate counter torques and quickly eliminate the components
in question. The λzx component is excluded because without compensating
elongation in the z direction it would compress the layers, see the analogous
problem when a SmA is stretched along the layer normal in chapter 4. It
would also rotate a component of the director perpendicular to the stretch
direction.

The initial orientation of the layer normal and the director are given by

n0 = (sin θ, 0, cos θ) (5.32)

k0 = (0, 0, 1) (5.33)

where θ is the tilt angle of the director (typically around 20◦). The current
orientation of the director is assumed to be

n = (sin θ cosφ, sin θ sinφ, cos θ) , (5.34)

and the layer normal, k unmoved. The layer normal (k0 = z) cannot be moved
by deformation tensors of the form Eq. (5.31) since it must be derived from the
expression k = λ−T ·k0 (i.e. the elements of ki are derived from the cofactors

of the elements λiz, all of which vanish except for the cofactor of λzz, as can
be seen by inspection of Eq. (5.31)). In addition, the only consistent rotation
matrices WR that leave the layer normal unmoved, must have their rotation

axis, R, parallel to k0. This rotation must take n0 → n. Thus WR can be

identified as a rotation of angle φ around an axis parallel to k0, and could be
written more concretely as Wk0(φ). Bearing this in mind, one constructs the

tensor λ =W k0(φ) ·Ww0(ξ) · ℓ
1/2
n′ · ℓ−1/2

0 (for the details of this see §5.A). The
only remaining variable is ξ, and this can be determined by demanding that
λxy = 0 in the appendix expression for λ. Writing ρ = sin2 θ + r cos2 θ ≡ w2

0,

this yields the following equation for ξ

0 = cos ξ sinφ+

√

r

ρ
cosφ sin ξ. (5.35)
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Using this expression for ξ all the components of the deformation tensor can be

obtained. Defining a(φ) =
√

cos2 φ+ ρ
r sin

2 φ produces the following matrix

for λ






a(φ) 0 (r−1) sin 2θ
2ρ (−a(φ) + cosφ)

(

1− ρ
r

) sin 2φ
2a(φ)

1
a(φ)

(r−1) sin 2θ
2ρ

(

sinφ−
(

1− ρ
r

) sin 2φ
2a(φ)

)

0 0 1







This tensor is explicitly constructed to be a soft mode and evidently has
det[λ] = 1. To illustrate this mode Fig. 5.5 shows how this sample deforms

for various different azimuthal angles, φ. The figure gives a view of a block
of SmC rubber down the layer normal and should be compared with Fig. 5.2.
Note that even after a rotation of the director of φ = π the rubber does not

Figure 5.5: An illustration of the soft mode of a SmC elas-
tomer. In this case the layer normal remains out of the page
and the c direction together with φ is shown in the centre of
the diagram. A tilt angle of θ = 30◦ and an anisotropy of r = 8
were chosen.

return to its original configuration. Because of the tilt of the director w.r.t.
the layer normal a strain λxz < 0 is generated after φ→ π and this component
has a cosφ term. By contrast λyx = λyz = 0 and λyy = 1 at φ = π; indeed
λyz depends on 2φ. At the intermediate value of φ = π/2 the elastomer has
contracted along the direction of the original anisotropy tensor and so has
developed both a λxz and λyz components of shear, that is with displacements
in both the x and y directions. The maximum extension in the y direction
occurs at φ = π/2, when the λyy component takes the value

√

r/ρ. For the
case with θ = 30◦ and r = 2 this gives a maximum extension of roughly 7%.
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Alternatively, one can think of imposing the λyy extension to induce the
rotation φ of c, Fig. 5.6, and the sympathetic shears λxz, λyz and λyx, Fig. 5.7.
These plots of the explicit forms given for the elements of λ reveal singular

edges to the rotation φ at 0, π and 2π analogously to those seen in nematic
soft elasticity. Although for r = 2 and θ = 30◦ the extend of soft extension is
only 7%.

1 1.02 1.04 1.06 1.08
λ

yy

0

1

2

3

φ

Figure 5.6: Director rotation φ about the layer normal against
elongation, λyy, perpendicular to its initial direction (r =
2, θ = 30◦).

It should be noted that the sample can develop very large shears softly; at
φ = π, λxz ∼ −1

2 , see Fig. 5.7.

5.4 Conclusions

A geometrical interpretation of the soft modes in two phases of smectic elas-
tomers has been presented. It was found that there is only one soft trajectory
for the director, excluding body rotations, as a consequence of the restrictions
imposed upon the elastomer by the fixed layer constraint. Specific examples
of this mode were presented for a monodomains of biaxial SmA or SmC. They
can respond softly to a single imposed component of the deformation tensor.
An illustration of imposed λyy was given but in principle we could impose
any other component, including λzz, through a combination of the single soft
trajectory and a body rotation. The experimental boundary conditions of
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1 1.02 1.04 1.06 1.08
λ

yy

-0.4

-0.2

0

0.2

0.4

λ
xz

λ
yz

λ
yx

Figure 5.7: Sympathetic shears λyx, λyz and λxz in response
to an imposed λyy. Again r = 2 and θ = 30◦.

fixed ends near the clamps mean that any soft mode will be accompanied by
microstructure, as is frequently the case in nematic elastomers.
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5.A Details of the deformation matrix

Here details of the calculation of the deformation tensor required for a soft
mode when the λyy component is imposed are given. The following vectors
are required

k0 = (0, 0, 1) (5.36)

c0 = (0, 1, 0) (5.37)

w0 = ℓ
1/2
0 · k0 (5.38)

c = (cosφ, sinφ, 0) (5.39)

k = k0 = R (5.40)

From these vectors we can calculate the rotation matrices

Wk0(φ) = δ cosφ+ (1− cosφ)k0k
T
0 + (sinφ)k0 ∧ (5.41)

Ww0(ξ) = δ cos ξ +
(1− cos ξ)

w2
0

w0w
T
0 +

sin ξ

w0
w0 ∧ . (5.42)

Using the expression

λ = ℓ
1/2
n ·Wk0(φ) ·Ww0 (ξ) · ℓ

−1/2
0 ,

results in the following









cos ξ cosφ−
√

ρ
r sin ξ sinφ −

√

r
ρ cosφ sin ξ − cos ξ sinφ · · ·

√

ρ
r cosφ sin ξ + cos ξ sinφ cos ξ cosφ−

√

r
ρ sin ξ sinφ · · ·

0 0 · · ·
· · · (r−1) sin 2θ

2ρ

(

cosφ(1− cos ξ) +
√

ρ
r sin ξ sinφ

)

· · · (r−1) sin 2θ
2ρ

(

−
√

ρ
r sin ξ cosφ+ (1− cos ξ) sinφ

)

· · · 1









To determine ξ simply demand that the λxy component is zero and obtain the
matrix given in the text.
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