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Abstract

This thesis explores the non-linear elasticity of smectic-A and smectic-C liquid crystal elastomers.
These materials consist of “rod-like” liquid crystal mesogens arranged in a layered phase, cross-
linked into a polymer matrix. The alignment direction of the mesogens is termed the director, and
in the smectic-A phase the director and layer normal are parallel, whereas in the smectic-C phase
the director is tilted at an angle to the layer normal. For smectic-C elastomers deformations that
rotate the director in a conical path around the layer normal are ideally perfectly soft. Realistically
non-idealities destroy perfect softness, and the resulting elasticity is termed semi-softness.

The semi-soft elasticity of monodomain smectic-C elastomer is investigated; starting from a model
consisting of smectic layering and nematic elasticity terms, and a penalty for changing the tilt
angle. A semi-soft elasticity term is then added to this energy. The elastic response to uniaxial
deformation in various stretching geometries is calculated using an energy minimization routine.
The stress-strain curves are diverse and depend strongly on the orientation of the layer normal,
director and stretch axis. Remarkably, for an elongation parallel to the layer normal the stress-
strain curve is non-monotonic, and the sample expands laterally in one direction over a range of
strains.

The stretching of monodomain smectic-A elastomer sheet is studied under realistic clamping condi-
tions; examining the effects of stretching angle and sample aspect ratio on microstructure formation.
Results generated by finite element analysis show that stretching parallel to the director the sample
bulk forms bidirectionally buckled microstructure, with unidirectional buckling near the clamped
edges. The aspect ratio significantly affects the microstructure distribution, but weakly influences
the stress-strain behaviour. It is shown that existing smectic models require an additional energy
term, related to the energy of deforming buckled layers or non-Gaussian effects, to reproduce the
experimentally observed Poisson’s ratios.
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Chapter 1

Introduction

This chapter contains some background material on liquid crystals, their phases, and liquid crystal
elastomers. There is then a literature survey of the synthesis of smectic elastomers, their alignment
into monodomains, their mechanical properties, and some applications. The theoretical background
of smectic elastomer models is then discussed with reference to experimental work.

1.1 Liquid Crystals

Liquid crystals (LCs) are liquids comprised of highly anisotropic molecules, e.g. rod-like or disc-like
molecules [1]. At high temperatures the positional order of the molecules is liquid like, and the
orientations are isotropic. As the temperature is lowered the attractive force between rods causes
their orientations to align, forming the nematic phase [2]. If the temperature is lowered further then
the molecules assemble into lamellae known as the smectic phase. These different LC mesophases
are illustrated in figure 1.1.

k knn n

NematicIsotropic Smectic-A Smectic-C

Figure 1.1: Schematic drawing of some LC phases. The high temperature isotropic phase is shown
on the left, followed by increasingly ordered lower temperature phases. The alignment direction of
the molecules is denoted by the director n and layer normal by k.

LCs exhibit a broad variety of differently ordered phases, but this thesis will focus on the following
phases:

• Isotropic Phase. The LC mesogens have liquid like positional order, and are randomly ori-
ented. This is the most disordered state and occurs at high temperatures.

• Nematic Phase. The LC mesogens are uniaxially aligned, but still have liquid like order of
their centers of mass. The average alignment direction of the rod-like molecules is called the
director, denoted by the unit vector n.

• Smectic-A Phase. The LC mesogens are arranged in a layered structure, with the director
and layer normal parallel [3]. The unit vector k denotes the layer normal.

2



CHAPTER 1. INTRODUCTION 3

• Smectic-C Phase. The LC mesogens are arranged in a layered structure, with the director at
an angle θ0 to the layer normal, called the tilt angle.

• Smectic-C* Phase. This is the chiral version of the smectic-C phase, formed by using chiral
mesogens which have an electric dipole moment [4]. The chirality creates a tendency for the
director to twist slightly between neighbouring layers, which creates a helical director pattern.
Consequently the dipole moments cancel out over one rotation period. If the helical structure
is untwisted the molecular dipole moments align, and a macroscopic electrical polarization
vector exists in the direction n× k.

The degree of ordering in a phase can be quantified by an order parameter. For example the
nematic orientational order can be described by the order parameter Q =

〈
3
2cos

2θ − 1
2

〉
. The

average is taken over all mesogens within a region of space, and θ is the polar angle each mesogen
makes with n. The parameter Q = 0 in the isotropic phase, and Q = 1 for a perfectly aligned
distribution. Similar order parameters can be defined to encode the orientation of the layer normal,
and the perfection of the smectic layers, but they will not be used here. We will assume that when
LCs are deep in an ordered phase the magnitude of the order parameter is fixed.

Deformations of Nematic Liquid Crystal

The deformation behaviour of LCs can be investigated by deforming them between two initially
parallel glass plates. At the interface of the LC and the glass the surface forces are strong, and the
mesogens are effectively anchored at a fixed orientation to the surface. Experimental techniques can
align the mesogens to be fixed parallel or perpendicular to the surface. Typically this is achieved by
rubbing the glass surface with a cloth. Unidirectional rubbing creates nanoscale grooves running in
one direction, and the rod-like mesogens tend to lie in these grooves, i.e. the mesogens are aligned
parallel to the surface and point in the rubbing direction [5]. Whereas inducing surface roughness
in two directions causes the mesogens to align end on to the surface.

The three principal deformation modes of nematic LC are splay, twist and bend.

Splay Twist Bend

Figure 1.2: Splay, twist and bend deformations in a nematic liquid crystal.

The splay and bend deformations illustrated in figure 1.2 are performed by altering the separation
of the plates, so that the plates are no longer parallel. Whereas the twist deformation is achieved
by rotating the plates relative to each other, whilst maintaining a constant spacing. The Frank free
energy [6] describes the elastic free energy per unit volume of a nematic LC, and has contributions
from each of the deformation modes,

FFr =
1

2
K1(∇ · n)2
︸ ︷︷ ︸

Splay

+
1

2
K2(n · ∇ × n)2

︸ ︷︷ ︸
Twist

+
1

2
K3(n×∇× n)2

︸ ︷︷ ︸
Bend

. (1.1)

The elastic constants K1, K2 and K3 penalize splaying, twisting and bending of the director field
respectively. Typically the three elastic constants have a similar magnitude K ∼ 10−11N [7].
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Deformations of Smectic-A Liquid Crystal

In smectic LC the energetic cost of changing the layer spacing is very high, so the layer spacing varies
only slightly from its equilibrium value. Bending of the layers is compatible with maintaining the
layer spacing, so layer bending is a low energy deformation mode. Whereas any significant splaying
or twisting of the layers would not maintain the layer spacing, and so can not occur unless layer
defects provide the deformation as illustrated in figure 1.3.

k(r)

Figure 1.3: Layer splay can occur due to the presence of edge dislocations [8].

Typically the effect of defects is small, so layer splaying and twisting can be entirely neglected. For
a set of defect-free, incompressible layers the integral

∮
k(r) · dl is zero for any path choice, which

implies by Stoke’s theorem that ∇×k = 0 holds everywhere [9]. In the case of the smectic-A phase
k = n, which implies that ∇× n = 0 holds everywhere. Consequently the smectic-A energy does
not include contributions from the K2 or K3 Frank elasticity terms, as these are zero.

The two principal deformation modes of smectic-A LC are layer stretching and layer bending.

x

z

Layer BendingLayer Stretching

Figure 1.4: The deformation modes of smectic-A LC are layer stretching and layer bending.

The stretching of layers is penalized by the smectic layer modulus B, which typically has a magni-
tude of 106Pa [10]. The bending of layers results in the splaying of the director field, as illustrated
in figure 1.4, so layer bending is penalized by the splay elastic coefficientK1. The continuum model
of smectic-A LC describes the elastic free energy in terms of the layer stretching and bending ener-
gies [9]. The displacement of the layers along the direction of the initial layer normal is described
by a scalar field U(x, y, z). For a sample with the layer normal initially oriented in the z direction
the smectic-A energy to leading order is

FSm−A =
1

2
B

(
∂U
∂z

− 1

2

(
∂U
∂x

)2

− 1

2

(
∂U
∂y

)2
)2

︸ ︷︷ ︸
Layer Stretching

+
1

2
K1

(
∂2U
∂x2

+
∂2U
∂y2

)2

︸ ︷︷ ︸
Layer Bending

. (1.2)
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This model provides a description of the smectic-A buckling instability that occurs when stretching
parallel to the director, which was first reported by Clark and Meyer [11].

Smectic-A Buckling Instability

When a uniform sample of smectic-A LC is strained in dilation parallel to the layer normal the
deformation is initially accommodated by an increase in the layer spacing. This deformation is
penalized by the smectic layer modulus B and is consequently energetically very expensive. A
far softer deformation mechanism is for the layers to periodically buckle and then to deform by
rotating the layers, as illustrated in figure 1.5.

z

x

Lz

Layer Stretching

Figure 1.5: A buckling instability occurs when dilating smectic-A liquid crystal parallel to the layer
normal [12]. The glass plates prohibit undulations from occurring at the boundaries.

The buckling of layers is penalized by the layer bending modulus K, and is therefore much softer
than layer stretching. The buckling instability occurs at threshold strain ǫth = 2π

√
K/B/Lz [11],

which is typically a very low strain as K is very small. The buckling instability can be relaxed
away via the movement of edge dislocations to relieve the strain, i.e. additional layers are locally
added to relax highly buckled or dilated regions [11].

1.2 What is Smectic Liquid Crystal Elastomer?

A liquid crystalline polymer (LCP) is formed by connecting the LC mesogens onto a polymer chain.
The LC mesogens can be linked onto the side of a polymer chain, or be directly incorporated into
the polymer backbone; respectively these are called i) side-chain LCP and ii) main-chain LCP.

The LC mesogens influence the conformation of the polymer backbone. In the isotropic phase
the chain shape is spherical, whereas in the more ordered LC phases the chain shape is a prolate
or oblate spheroid. Crosslinking these LCPs produces a rubbery solid called a Liquid Crystal
Elastomer (LCE), here we will focus on smectic LCEs. The result of cross-linking LC mesogens in
the smectic-C phase into a rubbery polymer network, is illustrated in figure 1.6.

LCEs are unusual materials because applying a macroscopic strain can alter the microscopic ori-
entation of the LC molecules. Just like LCs, LCEs undergo temperature dependent transitions
between phases. However in LCEs a phase transition can alter the macroscopic shape of the sam-
ple, as the polymer chain conformation depends on the phase. In some systems it is possible to
transition directly from the isotropic phase to the smectic-C phase [13].

Liquid Crystal Elastomer Chemistry

There are several different methods of synthesizing LCEs. For example smectic main-chain LCE
(MLCE) is commonly synthesized by using a one-pot, platinum-catalyzed, hydrosilylation polyad-
dition reaction, as outlined by Donnio et al. (2000) [14]. A uniformly thick film is achieved by the
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Layer Normal

Director

k

n

Figure 1.6: Schematic Drawing of side-chain smectic-C LCE. The mesogens are shown attached
end-on to the polymer network, but side-on attachment is also possible.

spin-casting technique. The constituents of a typical photoactive smectic-C MLCE, MCEB7Azo2-
2.5, are shown in figure 1.7.

Figure 1.7: Constituents of a typical photoactive smectic-C MLCE. i) PMPOPS is a pentafunc-
tional cross-linker, ii) TMDSO, tetramethydisiloxane is a siloxane rubber, iii) GB7 is a LC mesogen
of length 34 Å, and iv) AZO is a photoactive azobenzene derivative monomer [15].

The choice of chain chemistry strongly influences the resultant mesophases, for example aliphatic
acid chains and epoxy resin rigid monomers tend to result in smectic phases. This is because the
aliphatic chains sit between the smectic layers and the rigid monomers stay within the layers.

The “physicists view” of LCEs ignores the chemical details of the system, instead focusing on more
generic properties. This coarse grained approach will be adopted throughout the rest of this work.

Smectic LCE Domain Structure

When a high temperature phase is cooled to an ordered phase the symmetry of the system is
broken. For example when a ferromagnet is cooled below its Curie temperature it spontaneously
develops a magnetization. The direction in which the magnetization points is random, and may
be different in spatially separated parts of the ferromagnet. As a result a polydomain structure
forms. A similar process occurs in LCEs, for example when the isotropic phase is cooled into the
smectic-C phase two new directions, n and k, are introduced to the sample. As there is no preferred
direction, a randomly oriented domain structure is formed, as illustrated in figure 1.8.

Obraztsov et al. [16] found the domain size of a side-chain, Sm-A elastomer was 0.7µm without
cross-links and 3.4µm when cross-linked. The main-chain Sm-C elastomers studied by de Jeu et
al. [17] had domain sizes of approximately 100nm. It is typical that side-chain systems have much
larger domains than main-chain systems, as in main-chain systems the folding of the polymer chain
will reduce the coherence of the smectic layers.
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Figure 1.8: A 2-D slice through a randomly oriented polydomain of smectic-C LCE. Layers
are represented by lines and the arrows represent local directors.

To produce a monodomain sample a preferred direction can be created by applying a uniaxial
load during the sample manufacture (whilst chemical cross-linking is still ongoing). In the nematic
phase uniaxial stretching causes the directors within different domains to orient along the stretch
axis. This technique was developed by Küpfer and Finkelmann [18], and results in well ordered,
transparent monodomain LCEs.

A similar technique can be used in smectic-A LCEs for example Nishikawa et al. (1999) [19].
However in smectic-C LCE this process only aligns the director, and leaves a domain structure of
layer normals, k, each at an angle θ0 to n. A sample that has a uniform director and a conical
distribution of layer normals is termed a pseudo-monodomain [20], and is illustrated in figure 1.9.

y
x

z
θ0

n0 k0

Figure 1.9: (left) A 2-D slice through a pseudo-monodomain of smectic-C LCE. The director
is globally aligned, and the layer normals are conically distributed. (right) A representation of a
smectic-C pseudo-monodomain.

A smectic-C LCE monodomain has a globally aligned director and aligned layer normal, as shown
in figure 1.10. Various experimental techniques are employed to create a monodomain, which will
be discussed in section 1.4.

y
x

z
θ0

n0
k0

Figure 1.10: (left) A 2-D slice through a smectic-C LCE monodomain. (right) A representation
of a smectic-C monodomain.
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1.3 Mechanical Experiments on Smectic-A LCE

Nishikawa & Finkelmann (side-chain)

The first single domain smectic-A elastomer was reported by Nishikawa et al. [21], and based on
side chain liquid crystalline polymers. A single domain was obtained by subjecting the elastomer
to a uniaxial mechanical stress during cross-linking, which serves to align the layers. The single
crystal elastomer formed by this process is highly optically transparent, see figure 1.11(a). Whereas
polydomain elastomers appear opaque, due to the scattering of light at domain interfaces [22].

When stretching parallel to n0 the sample undergoes a layer buckling instability analogous to the
buckling transition found in smectic-A liquid crystals. The stress-strain curve for this stretch is
shown in figure 1.11. The deformation is initially stiff with an elastic modulus of ∼ 3MPa, which
is characteristic of the smectic layer modulus B. At a threshold strain ǫth of approximately 3%
the layers buckle, and the sample become opaque due to the newly formed microstructure. Above
the threshold the elastic modulus is only ∼ 0.1MPa, which is characteristic of the rubber elastic
modulus µ. This deformation is reversible and the microstructure clears within seconds of the
strain being removed [21].

n0

ǫ ‖ n0

ǫth

σ
N

(k
P
a
)

(b) ǫ = 0.40(a) ǫ = 0.00

ǫ (∆L/L0)

60

90

0.00 0.100.05 0.20

120

150

30

0.15

0

σth E = 1.3 × 105 Pa

E = 3.2 × 106 Pa

Figure 1.11: Stress-strain curve stretching parallel to n0 of a smectic-A monodomain. The sample
is shown (a) undeformed, and (b) at a strain of ǫ = 0.4 parallel to n0 [19].

The reorientation of the smectic layers is revealed by the x-ray scattering patterns of figure 1.12.
The small angle x-ray scattering (SAXS) corresponds to the orientation of layer normals that lie in
the scattering plane. The buckling instability causes the SAXS pattern to split into four maxima,
which are oriented at an angle φ to the stretch axis. The layer normals rotate away from the stretch
axis with increasing strain, resulting in a conical distribution of layer normals.

Figure 1.12: X-ray scattering patterns at various strains applied parallel to n0 [19].
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The wide angle x-ray scattering (WAXS) patterns of figure 1.12 correspond to the orientation
of directors that lie in the scattering plane. A uniform director field results in two broad WAXS
maxima, and a line connecting these maxima is normal to the director orientation. The two WAXS
peaks become increasingly broad with strain but cannot be resolved into four separate maxima,
due to their high intrinsic width.

Nishikawa and Finkelmann assert that at high strains the layers breakdown and the smectic phase
melts into the nematic. However later authors argue that the elastic energy is too small to melt
the system [23]. More detailed x-ray studies of similar side chain systems reveal that the layers
behave as if they are embedded in the rubber matrix [24].

When stretching perpendicular to n0 the layer planes maintain their original orientation. The
stretch does not alter the layer spacing, instead the deformation is accommodated within the
plane of the layers. Consequently the width of the sample is unchanged by the stretch and all the
contraction occurs in thickness direction, as shown in figure 1.13(b). The Poisson’s ratios stretching
perpendicular to n0 are (0, 1), which contrasts with (12 ,

1
2 ) for the parallel case. The stress-strain

curve of figure 1.13 shows that the elastic modulus stretching perpendicular to n0 is ∼ 0.1MPa,
which is characteristic of the rubber modulus µ.

n0

ǫ ‖ n0

ǫ ⊥ n0

ǫ (∆L/L0)

(a) ǫ = 0.00 (b) ǫ = 0.80

0

0.050.00 0.10 0.15 0.20 0.25

20

40

60

80

E = 10.3 × 106 Pa

σ
N

(k
P
a
)

E = 1.4 × 105 Pa

Figure 1.13: Stress-strain curve stretching perpendicular and parallel to n0. The sample is shown
(a) undeformed, and (b) at a strain of ǫ = 0.8 perpendicular to n0 [21].

Komp & Finkelmann (side-chain)

Later experiments on side chain systems with different chemistry have found a similar stress-strain
threshold behaviour when stretching parallel to the director [25]. The stress-strain curve of figure
1.14 shows that at a strain of ∼ 5% the stiffness reduces from ∼ 14MPa to ∼ 0.4MPa, which is
similar to the behaviour found by Nishikawa et al.. The Poisson’s ratios stretching parallel to the
layer normal are (12 ,

1
2 ), and in the perpendicular case they are approximately (0, 1). The sample

has an elastic modulus of ∼ 3.8MPa when stretching perpendicular to the layer normal, which is
surprisingly stiff as this is an order of magnitude larger than the rubber elasticity modulus in the
isotropic phase.

Unexpectedly the sample remains transparent when stretching parallel to the layer normal, as
shown in figure 1.14(b). Also the x-ray scattering shown, in figure 1.15, does not indicate a
reorientation of the smectic layers, as the SAXS peaks remain parallel to the stretch axis. The
interpretation of Komp and Finkelmann is that no buckling instability or microstructure formation
occurs. They attribute the behaviour to defects in the smectic layer structure, as their sample
has a low smectic layer correlation length ξ = 300 Å, compared to ξ ∼ 1.4µm found by Nishikawa
et al.. They argue that in order to achieve the deformation the number of layers in the sample
to increases, which is possible due to the rearrangement of defects in the sample. The poorly
correlated layers may prohibit the typical in-plane fluidity of the layers, resulting in an increased
stiffness when stretching perpendicular to the layer normal.
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An alternative explanation is that the sample is buckling only in its thickness direction. The sample
might still appear transparent because it is only 100µm thick. The x-ray scattering data could be
consistent with this scenario, as unidirectional buckling would rotate the layers out of the scattering
plane rather than around the scattering plane. Consequently the absolute scattering intensity would
drop sharply at the threshold, and the SAXS peaks would remain parallel to the stretch axis.
Unfortunately absolute scattering intensity measurements are unavailable. However the observed
Poisson’s ratio of (12 ,

1
2 ) are not consistent with a deformation mode of unidirectional buckling,

which would only cause contraction in the thickness direction. Other possible explanations such
as the influence of the sample aspect ratio and a small misalignment of the layer normal with the
stretch axis are considered in the finite element modelling work of chapter 5.

n0

Isotropic Phase

λ ⊥ n0

λ ‖ n0

λ = 1.00 λ = 1.39λ

0.0

0.5

1.5
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Figure 1.14: Stress-strain curves stretching monodomain Sm-A LCE parallel and perpendicular to
n0, and stretching the high temperature elastomer in the isotropic phase. The Sm-A monodomain
sample is shown (a) undeformed and (b) stretched by λ = 1.39 parallel to n0 [25].

(a) (b)

Figure 1.15: X-ray scattering patterns for (a) λ = 1.00 and (b) λ = 1.39 parallel to n0 [25].

A side-chain smectic-A elastomer with a high concentration of defects was investigated by Kramer
and Finkelmann [26]. Chemically the sample included two different mesogens of slightly different
sizes, resulting in a layer correlation length ξ = 400 Å. When stretching parallel to the layer
normal there was a smeared out stress-strain threshold at ∼ 3%, and the sample remained optically
transparent above the threshold, which is qualitatively similar to the behaviour found by Komp
and Finkelmann. The behaviour of smectic elastomer is also known to depend on the degree of
crosslinking in the elastomer [27], as heavy cross-linking induces disorder in the layers.
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Kramer & Finkelmann - Shear experiment (side-chain)

Kramer and Finkelmann investigated the shearing of monodomain smectic-A elastomer [28]. The
sample was identical in chemical composition to that of Nishikawa et al. (1999). Imposing a shear
strain perpendicular to the initial layer normal resulted in a non-zero tilt angle in the smectic-A
phase. A shear strain of 21◦ is shown applied in figure 1.16. The corresponding x-ray scattering
data demonstrates that the layers do not reorient, as the SAXS peaks are fixed in orientation.
Whereas the director has rotated by 6◦, as the WAXS peaks have rotated by this amount, thus
there there is an induced tilt of 6◦.

Figure 1.16: (left) A smectic-A monodomain sheared perpendicular to the layer normal to angle
of 21◦, and (right) the corresponding SAXS and WAXS shows an induced tilt of 6◦ [28].

Beyer, Terentjev & Zentel (main-chain)

A smectic elastomer with a main chain polymer architecture (where the mesogens are incorporated
directly into the backbone) was investigated by Beyer, Terentjev & Zentel [29] . This system and
other main-chain systems have contrasting behaviour to side chain systems [30, 31]. The stress-
strain curves for main-chain monodomain smectic-A elastomer, shown in figure 1.17, only exhibit
a threshold behaviour when stretching at low temperatures. At higher temperatures the initial
elastic modulus is less than 1MPa, which is smaller than the expected smectic modulus. This
suggests that network crosslinks may be free to move between the smectic layers in these systems,
whereas in the samples of Nishikawa et al. the cross-links are thought to be constrained by the
layers. Consequently the difference between the elastic moduli in the parallel and perpendicular
directions is relatively low.
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Figure 1.17: Stress-strain curves stretching a smectic-A monodomain parallel to n0 of at 39◦C,
51◦C and 72◦C and stretching perpendicular to n0 at 51◦C [29].
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SAXS WAXS

(c) ǫ ≈ 0.6

n0

(a) (b)

Figure 1.18: (a) SAXS and (b) WAXS patterns stretching a smectic-A monodomain parallel to n0
at strains of ǫ = 0 and ǫ = 0.6, at room temperature, and (c) the sample at ǫ ≈ 0.6 [29].

The x-ray scattering patterns, shown in figure 1.18(a) and (b), demonstrate an increase in ordering
when stretching parallel to the layer normal [29]. The sample, shown in figure 1.18(c), remains
transparent when stretched parallel to the layer normal. It is thought that hairpin defects – sharp
reversals in the chain orientation – play a crucial role in the softening behaviour rather than layer
buckling [29, 30, 32], hence no rotation of the layers or microstructure formation is observed. The
smectic layers do not seem to be strongly coupled to the rubber matrix, and hence do not behave
as embedded planes. Experiments on main chain smectic-C elastomers layers also show that layers
are weakly coupled to the rubber matrix [33, 34].

1.4 Mechanical Experiments on Smectic-C LCE

Experimentally Aligning a Smectic-C LCE Monodomain

On crosslinking smectic-C LCE forms with a randomly-oriented, polydomain structure if there is
no preferred direction. The creation of uniformly-ordered monodomain samples was a significant
experimental development, and there are two principal experimental methods for their creation.
These experiments are based on applying two deformations (one after the other) during crosslinking,
to align both the director and layer normal in a sample.

Method 1. Reorientation by two sequential uniaxial stretches

Semmler and Finkelmann [35] demonstrated that two uniaxial stretches can be used to align a
smectic-C∗ sample. The first stretch aligns the director just as in a nematic, which results in a
pseudo-monodomain described earlier. The second stretch is at an angle φ to the first stretch,
where φ = 90◦−θ0 as illustrated in figure 1.19. This second stretch does not reorient layer normals
that are already perpendicular to the stretch axis. All the other layer normals are reoriented to
become perpendicular to the stretch axis.

Method 2. One uniaxial stretch followed by a shear deformation

Hiraoka and Finkelmann [36] demonstrated that a uniaxial stretch followed by a shear deformation
can be used to align a smectic-C∗ sample. The first stretch is achieved by applying a uniaxial
stress of 25 kPa for 1 hour, and produces a pseudo-monodomain. The shear deformation is used
to align the layer normals and is through an angle of approximately 20◦ applied for 3 hours, until
the cross-linking reactions are complete. The apparatus used to apply this shear is shown in figure
1.20.
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Figure 1.19: Geometry of the two uniaxial deformations. φ is 90◦ minus the Sm-C tilt angle [35].

k0
n0

Figure 1.20: Geometry of shearing a Sm-C pseudo-monodomain to produce a monodomain [36].

Hiraoka and Finkelmann - Reversible thermal deformation

The quality of a smectic-C monodomain can be illustrated by demonstrating the coupling between
the microscopic orientation of the director and the macroscopic shape of the rubber. Hiraoka et
al. [37] took a smectic-C∗ monodomain and heated it into the smectic-A phase, which causes a
spontaneous shear as a result of the tilt angle going to zero. When cooled back to the smectic-C∗

phase the sample recovers its initial shape, as illustrated in figure 1.21.

Sm-ASm-C*

Figure 1.21: Model of the molecular realignment of Sm-C* LCE film on heating to the Sm-A phase.
The shear angle, θE , is not in general equal to the induced tilt angle, θX , due to the polymer chain
anisotropy [37].
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Pseudo-Monodomain Samples

Despite the existence of these methods to produce a monodomain, there are no mechanical exper-
iments characterizing the stress strain behaviour of smectic-C monodomains. Experimentally it
is easier to produce a pseudo-monodomain, and hence mechanical experiments have focussed on
them. However, the reorientation of the director and layer normal in each domain results in a more
complicated deformation process than for a monodomain. This process has been studied through
x-ray scattering [15], but the scattering patterns can be difficult to interpret as they are the sum
of many, differently oriented domains. Unfortunately they are the only mechanical data available
to probe current theoretical models, so the main results of these experiments are presented here.

Sánchez-Ferrer & Finkelmann - Stretching a pseudo-monodomain
(main-chain)

The uniaxial stretching and shearing experiments of Sánchez-Ferrer and Finkelmann [15] are per-
formed on smectic-C, main-chain LCE with a pseudo-monodomain microstructure described ear-
lier. The samples are highly anisotropic; stretching parallel to the director is much stiffer than
stretching perpendicular to the director and much larger deformations are possible when stretch-
ing perpendicular to the director, see figure 1.22. The sample relaxation proceeded slowly, so 1
hour of relaxation time was given between deformation increments.
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Figure 1.22: (left) True stress versus deformation, for stretching parallel and perpendicular to the
director, and (right) shear stress versus shear strain, parallel and perpendicular to the director in
a smectic-C LCE pseudo-monodomain [15].

When stretching parallel to the director the initial elastic modulus is ∼ 13MPa, but at a deforma-
tion of λ ≈ 1.2 the modulus increases to ∼ 20MPa. The x-ray scattering patterns for the initial
part of this stretch are shown in figure 1.23.

The WAXS patterns appear to show that the director remains parallel to the stretch axis, and this
is further supported by a corresponding increase in the WAXS order from S = 0.82 to 0.89. The
SAXS peaks can be seen to reorient from an angle of 31◦ to 40◦ relative to the stretch axis, i.e.
the layer normals rotate away from the stretch axis. If the director is parallel to the stretch axis,
then the smectic-C tilt angle must be increasing. For deformations greater than λ ≈ 1.2 no further
reorientation is observed, and the corresponding stiffness is slightly higher. The deformations
applied parallel to the director are reversible.

The stretching of a pseudo-monodomain parallel to the director provokes a number of questions;

1. Why does the rotation of the layers stop at a certain strain?

If the smectic layers deform like embedded planes then the layer normals would rotate away
from the stretch axis with the director following at the tilt angle. This is because when a
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λ = 1.00 λ = 1.20

Figure 1.23: X-ray scattering patterns for (a) λ = 1.00 and (b) λ = 1.20 parallel to n0 [15].

strain is imposed at an angle to the layer normal of a layered material, the elongation and
contraction of the sample naturally rotate the layer normal. It seems surprising that no
buckling instability like that found by Nishikawa et al. occurs in this geometry, as this would
allow deformation at the rubber shear modulus.

Sánchez-Ferrer and Finkelmann assert that the director is not able to rotate when strain is
applied parallel to the director, due to the main-chain chemistry of the system. They argue
that as the mesogens are incorporated directly into the polymer backbone there is a torque
which prevents the mesogens rotating. This explanation seems to contradict the classical
understanding of liquid crystal elastomers, which argues that the anisotropic polymer chain
distribution created by the broken symmetry of the liquid crystal director is free to rotate.

2. Why is stretching parallel to the director so stiff?

The observed stiffness is characteristic of the smectic layer modulus and only limited layer ro-
tation occurs, but theoretically a layer instability seems favourable. One possible explanation
is that it is difficult to rotate the layers and deform neighbouring domains in a compatible way.
The problem of compatibility may be exacerbated by the initial domain structure present in
a smectic-C pseudo-monodomain, i.e. the interlocking domains are irregularly shaped and
possess different initial orientations of the layer normal.

The layer correlation length in this sample is 400 Å, which is typical for main-chain systems.
In main-chain smectic-A systems such poorly correlated [26] or weakly coupled layers [38]
result in a low elastic modulus when stretching parallel to the director. But these mechanism
do not seem to allow for a low elastic modulus here.

λ = 1.00 λ = 4.00 λ = 8.00

Figure 1.24: X-ray scattering patterns for deformations (a) λ = 1.00, (b) λ = 4.00 and (c) λ = 8.00
perpendicular to n0 [15].

When stretching perpendicular to the director the initial modulus is ∼ 0.3MPa, but a reduction in
the modulus occurs at a deformation of λ ∼ 2.3. This coincides with the initiation of a reorientation
process, where the layers reorient to become perpendicular to the stretch axis. The x-ray scattering
patterns, shown in figure 1.24, demonstrate that the layer normals are oriented perpendicular to
the stretch axis when λ = 4. Surprisingly at deformations above λ ∼ 6 the layers rotate towards
the stretch axis, as the director becomes aligned with the stretch axis. The x-ray scattering shows
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that at λ = 8 the sample has reoriented into a pseudo-monodomain with the director parallel to
the stretch axis. The modulus corresponding to the last phase of deformation is ∼ 0.4MPa, which
seems low considering that a pseudo-monodomain is being stretched parallel to the director. All
the deformation associated with reorientation (i.e. λ > 2.3) is irreversible.

The stretching of a pseudo-monodomain perpendicular to the director also provoke questions;

1. When stretching perpendicular to the director why does reorientation form a pseudo-monodomain?

At very large strains the layer normals rotate towards the stretch axis, which indicates that
the layers are not behaving like embedded planes It is possible that at large strains the smectic
layers are no longer strongly coupled to the rubbery matrix, which allows the director to align
with the stretch axis.

2. Why are the deformations that result in reorientation irreversible?

It might be expected that layer and director reorientation would correspond to elastic pro-
cesses, so the deformations would be able to reverse themselves when the strain is removed.

When shearing parallel and perpendicular to the director the initial elastic modulus is identical
for both geometries, see figure 1.22, The modulus of ∼ 0.3MPa is characteristic of the rubber
modulus. For the case of shearing perpendicular to the director there is a reduction in the shear
modulus above a shear angle of around 19◦. Both shear deformations cause reorientation towards
a monodomain state, but the order parameter data indicates that shearing perpendicular creates
a more uniform monodomain.

Modelling the mechanical deformations of smectic-C elastomer in various geometries may be able
to resolve some of the questions raised by this experiment.

Sánchez-Ferrer & Finkelmann: Polydomain to Pseudo-Monodomain
Transition (main-chain)

Sánchez-Ferrer and Finkelmann also studied the stretching of main-chain, smectic-C polydomain
[34]. The strain causes a reorientation process, which eventually produces a pseudo-monodomain
with the director parallel to the stretch axis. Increasing the crosslink density resulted in a shorter
soft plateau and a shorter extension to breaking point. Once reorientation is complete the sample
deforms nearly as stiffly as the pseudo-monodomain sample stretched parallel to the director, see
figure 1.25.
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Figure 1.25: True stress versus strain. The stiffness of stretching a polydomain is intermediate to
the two cases of stretching a pseudo-monodomain shown. The arrows indicate the strain region
where the polydomain sample undergoes a reorientation towards a Sm-C pseudo-monodomain [34].
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Patil, Lentz and Hedden: Polydomain to Pseudo-Monodomain Transition
(main-chain)

Hedden et al. investigated the stretching of a main-chain smectic-C polydomain, prepared in a sim-
ilar way to that of Sánchez-Ferrer et al. but with different chemical constituents. The polydomain
undergoes a necking process, which produces a pseudo-monodomain with the director aligned with
the stretch axis. The necking transition occurs at λ ∼ 1.2, with the necked pseudo-monodomain
region eventually consuming the non-necked polydomain region. The authors attribute the neck-
ing transition to the unfolding of hairpin chains, and the irreversibility of the deformation to the
formation of new smectic domains. The stress-strain curve, shown in figure 1.26, indicates that the
sample initially deforms at the smectic modulus.
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Figure 1.26: Nominal stress versus strain of main-chain smectic-C polydomain imposed by (a) a
force ramp and (b) a strain ramp [33].

Ren, McMullan, and Griffin: Various Systems (main-chain)

Griffin et al. measured the strains-ratio (the negative ratio of the width strain to elongation strain)
for polydomain and pseudo-monodomain smectic-C elastomer [39], as shown in figure 1.27. The
stress behaviour is similar to that found by Sánchez-Ferrer and Finkelmann. However stretching a
pseudo-monodomain perpendicular to n0 resulted in necking at a strain of ∼ 30% after which the
strains-ratio measurements were discontinued.
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Figure 1.27: (left) Stress-strain and (right) the strains ratio for stretching (a) a pseudo-monodomain
parallel to n0, (b) a polydomain, and (c) pseudo-monodomain perpendicular to n0 [39].
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Griffin et al. then incorporated transverse rods into a main-chain smectic-C polydomain [40]. The
intention was to create an auxetic effect (lateral expansion perpendicular to the stretch axis) by
increasing the packing density when the transverse rods rotate, as illustrated in figure 1.28.

(a)

(b)

Figure 1.28: Illustration of the auxetic effect mechanism, achieved through the incorporation of
transverse rods, shown (a) in the undeformed state, and (b) once a deformation is applied [40].

The stress-strain behaviour is largely unchanged by the transverse rods, and the mechanism failed
to achieve a negative stress-strain ratio, as shown in figure 1.29. The authors attribute this to the
smectic layers preventing rotation of the transverse rods, and argue that longer transverse rods
with shorter spacing between rods might realize auxetic effects in main-chain LCE. However in
elastomeric materials a non-volume conserving deformation mode would be penalized by the bulk
modulus ∼ 1GPa [41]. This greatly exceeds the energetic cost of all other deformation modes
in main-chain LCE, e.g. layer stretching ∼ 10MPa or entropic elasticity ∼ 0.1MPa, so these
deformation modes will occur rather than a volume expansion. Consequently the proposed auxetic
mechanism is unlikely to be achievable in LCE, but a glassy system where the volume is not
ordinarily conserved may render it possible.
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Figure 1.29: (left) Stress-strain and (right) the strains ratio for stretching a smectic-C polydomain
with (a) 0mol% (b) 10mol% (c) 20mol% (d) 30mol% and (e) 40mol% of transverse rods [40].

Smectic-C LCE Balloon Experiments (side-chain)

Schüring et al. [42] demonstrated that a planar film of smectic melt can be inflated into a spherical
bubble and then photocross-linked to form a smectic-C LCE balloon, see figure 1.30. The melt
was blown and UV cross-linked whilst in the smectic-A phase and the biaxial elongation flow
aligned the layer normals parallel to the radius of the balloon. In order to blow a bubble low
viscosities and therefore high temperatures are required. Measuring the air pressure and balloon
radius determined the elastic modulus in the isotropic, smectic-A and smectic-C phases.

It was not possible to blow a balloon with a radius much larger than the capillary tube, meaning
that the balloon is not perfectly spherical. A uniform thickness of a balloon could not be exper-
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P = −0.25Pa P = 1.15PaP = 91.7Pa

Figure 1.30: Shape of an LCE balloon with different internal excess pressures. The diameter is
approximately 5 mm. The balloon is stable at negative pressure differences because of elastic forces
(the crinkles are fully reversible). The balloon had an equatorial thickness of 2.3 µm [42].

imentally achieved due to the high molecular weight of the polymer melt. The high cross-linking
density and dilute concentration of smectic mesogens in the elastomer meant that there was no
significant difference between the isotropic and smectic phases [43], which prevented any smectic
layer compression or tilt angle effects from being observed.

Similar side-chain systems produced by photo-crosslinking also behave closer to isotropic rubbers
[44], and demonstrate interlayer penetration upon stretching parallel to the layers [45].

1.5 Applications of Smectic LCE

Smectic elastomers have a number of potential applications, but are especially interesting as
miniaturized-actuators, sensors and shape memory materials [46, 47]. The symmetry properties of
the chiral smectic phases allows electrical actuation, which may be more convenient than thermal
or photo actuation.

Smectic-C* LCEs are piezoelectric, as they have the correct symmetry properties to possess
electric dipoles. The polarization vector points in the direction n× k. Piezoelectricity is the effect
whereby a mechanical strain causes a change in the electrical polarization of the material. A change
in electrical polarization can be measured as a change in surface charge density. Smectic-C* LCE
is a soft and highly-deformable material. This is in contrast with ceramic piezoelectric actuators,
which are capable of very small deformations at high stress.

Smectic-C* LCEs also exhibit ferroelectricity [20]. This means that the spontaneous electrical
polarization can be reversed, for example by an applied electric field.

The electroclinic effect was first demonstrated in smectic-A* LCs by Garoff and Meyer (1977)
[48]. It is the direct coupling of the tilt angle to an imposed electric field. In smectic-A* LCEs this
effect induces a macroscopic strain because it modifies the tilt angle away from an initial value of
θ0 = 0, producing a contraction in the layer spacing by a factor 1−cos θ0. In LCEs the electroclinic
effect is strongest at the smectic-C* to smectic-A phase transition.

Ferroelectricity in a Pseudo-Monodomain

Heinze and Finkelmann [20] subjected pseudo-monodomain smectic-C* samples to a simple shear
deformation, see figure 1.31. The layer structure was reoriented by the shear, which resulted in a
spontaneous polarization.

The layer normal reorientation was tracked using x-ray diffraction and measurements of the spon-
taneous polarization. The X-ray measurements showed that shear does not create a uniform mon-
odomain sample, which appears to contradict similar experiments e.g. [15], [36].



CHAPTER 1. INTRODUCTION 20

Figure 1.31: Shearing perpendicular to the director of a pseudo-monodomain. Silver grease was
used to create electrical contacts on the two sides of the elastomer [20].

At shear angles smaller than the tilt angle there is a splitting of the wide angle scattering distribu-
tion, which suggests that there are two different director orientations. At shears greater than the
tilt angle the director reorientation process has finished and the scattering peaks are constant.

The layer normals that are initially on the positive half of the x-axis, K+x, behave differently to
their negative counterparts, K−x. At small shears the layers K−x migrate to the x-z plane, which
can be seen from the increase in scattering intensity. Once shears of around the tilt angle have
been reached these layers are finished reorientating. However the layers K+x migrate away from
the x-z plane and never realign with the x-z plane. This behaviour qualitatively agrees with the
smectic-C model of Warner and Adams [49].

The spontaneous polarization was linearly dependent on the concentration of chiral dopants.

A different realignment method, where the layer reorientation is much less complicated, is required
to study the true spontaneous polarization of this material.

Electroclinic Effect in a Monodomain

Hiraoka and Finkelmann demonstrated the electroclinic effect in a monodomain Sm-C* sample
at various temperatures [50]. The electroclinic effect is the direct coupling of the tilt angle to an
imposed electric field. Electrodes imposed an electric field across the thickness of the sample, and
the resultant deformation was measured with a microscope, see figure 1.32.

(a)

(b)

Figure 1.32: Observation of an electric-field-induced deformation; (a) sample geometry and (b) a
micrograph image corresponding to the square section dotted within in (a) [50].
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By varying the temperature the material was found to be most responsive at the Sm-C*- Sm-A
phase transition. The electroclinic effect can occur in the Sm-A* phase because an applied electric
field can induce a polarization by increasing the tilt angle. The resultant deformation from an
imposed electric field is shown in figure 1.33. The greatest strain achieved was ∆L/L0 = 0.6%
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Figure 1.33: Electric field, E, and deformation in the direction ∆L. The temperature was just
above the Sm-C* to Sm-A phase transition. The sample had a residual tilt angle of about 5◦ in
the Sm-A phase, caused by cross-linking the sample in the Sm-C phase [50].

Shape Memory in Smectic-C LCE

Shape memory polymers (SMPs) are materials that have the ability to return from a deformed state
(temporary shape) to an original shape, when triggered by an external stimulus e.g. temperature
change.

Rousseau and Mather [47] demonstrated that polydomain smectic-C main-chain LCE exhibits a
thermomechanical shape memory.

Shape memory polymer works by following the cycle shown in figure 1.34;

(i) Firstly the material is heated to a point above the transition temperature. This starting point
is marked in figure 1.34 by the point marked (a).

(ii) Deformation. A force is imposed on the material, which deforms it into a temporary shape.

(iii) Cooling. The material is cooled beneath the transition temperature. In typical SMPs a
crystallization occurs, which forms covalent netpoints that prevent a return to the original
shape.

(iv) Fixing. The deformation force is removed, with the material retaining its temporary shape.

(v) Recovery. The material is activated by heating it above the temperature required to destroy
the covalent netpoints. The material returns to the original shape.

In Smectic-C LCE a polydomain microstructure forms on cooling beneath the Iso-Sm-C transition
temperature. This polydomain microstructure is responsible for stabilizing the temporary shape.
If the sample is heated above the transition temperature the microstructure is destroyed and the
initial shape recovered. By comparison natural rubber is not an effective shape memory material,
as illustrated by the cycle starting from point (b) in figure 1.34. There is no memory effect here,
as after the sample is cooled and the force removed, the strain recovers back to zero.

The transition temperature of the LCE can be fixed by varying the composition of mesogens,
which enables body temperature triggering (37◦C). There are numerous biomedical applications of
shape memory polymer technology foams e.g. scaffolds for tissue engineering, foams for treating
aneurysms, stent materials that release embedded drugs and a needle adapter for dialysis patients
[51].
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Figure 1.34: Shape memory cycle of (a) Smectic-C LCE (b) Natural rubber [47].

1.6 Theoretical Models of Nematic Elastomer

The reorientation processes and mechanical properties of LCE can be studied by considering the
minimization of model free energies. It is useful to introduce the theory of nematic elastomers here,
as smectic elastomer models are based on this theory. Numerous nematic free energies have been
put forward in the literature and these can successfully describe many observed phenomena, e.g.
the rotation of the director towards the stretch axis and the associated stress-strain plateau.

Ideally Soft Nematic Elastomers

Nematic elastomers have an anisotropic polymer chain conformation, due to the liquid crystalline
ordering. Typically the polymer chains prefer to run parallel to the director, giving a prolate chain
configuration. The polymer anisotropies parallel and perpendicular to the director are l|| and l⊥,
and their ratio is denoted as r = l||/l⊥. Deformations that can be achieved by simply rotating the
polymer chain anisotropy are in an idealized sense perfectly soft. The elastic energy of an ideally
soft nematic elastomer was derived by Bladon, Terentjev and Warner [52] to be,

FBTW = F0(Q, λ) +
kBT

2

(
1

l||
− 1

l⊥

)
Tr
[
λ · ℓ0 · λT · ℓ−1

]
, (1.3)

where the nematic liquid crystal order parameter Q is taken to be unaffected by the deformation.
The initial orientation of the director is n0, and following deformation the director is n. The
polymer step-length tensor is ℓ0 = δ + (r − 1)n0 n

T
0 and its inverse is ℓ−1 = δ + (1r − 1)nnT . The

deformation matrix λ describes affine deformations of the elastomer. A point R0 in the reference

state is transformed to the target state by R = λ · R0, as illustrated in figure 1.35.

The components of the deformation matrix describe either shears or elongations, e.g. the λxx
component is an elongation in the x-direction and λxz is a shear of the planes with a normal in
the z-direction into the x-direction.

For an imposed deformation the energy can be minimized with respect to the director orientation.
When stretching perpendicular to the initial director there is a director instability at a threshold
strain λc, provided restrictions on the allowed deformation components are made. The threshold

strain is a probe of the initial chain anisotropy as λc =
(
l||/l⊥

) 1
3 .

This prediction qualitatively agrees with the experimental findings of Mitchell et al. [53], where a
monodomain nematic sample underwent a strain-induced discontinuity of the director orientation.



CHAPTER 1. INTRODUCTION 23

Reference State

λ

Target State

O

R0

n0

R0 R

n

O

u

Figure 1.35: The deformation matrix λ transforms points between the reference and target states.

However similar experiments by Kundler and Finkelmann [54] do not observe any discontinuity
instead a stripe domain pattern forms at a threshold strain. It was also observed that perfectly
soft deformations of nematic elastomers do not occur, as there is a slight elastic stiffness associated
with rotations of the director.

Semi-Soft Nematic Elastomers

In order to explain the stiffness associated with director rotations an additional semi-softness term
is required, i.e. an energy term that penalizes the soft deformation modes. Verwey, Terentjev and
Warner [55] introduced a model of semi-softness caused by compositional fluctuations. Composi-
tional fluctuations are unlikely to be the dominant factor in how softness is actually destroyed, but
this energy term is of the correct functional form to describe semi-softness arising from any sample
non-ideality.

FV TW =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]

︸ ︷︷ ︸
Fnematic

+
1

2
αµTr

[
λ · (δ − n0 n

T
0 ) · λT · nnT

]

︸ ︷︷ ︸
Fsemi−soft

(1.4)

Theoretical stress-strain curves can be derived from the semi-soft model and compared to the
experimental results of Kundler and Finkelmann. A deformation, λ, is imposed perpendicular
to the initial director and the remaining deformation components and director orientation are
minimized over. The free energies for ideally soft and semi-soft nematic elastomers are shown
in figure 1.37. The curves are labelled A, B and C corresponding to different degrees of director
rotation: A is no director rotation, along B the director rotates from θ = 0 to π/2 and C corresponds
to π/2 rotation. Stripe domains are visible when the director is partially rotated, i.e. on curve B.
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Figure 1.36: Free energy of (left) ideally soft and (right) semi-soft nematic LCE, stretched perpen-
dicular to n0 for r = 2. [55].

The semi-soft stress-strain response and the corresponding lateral strains are shown in figure 1.37.
There is a semi-soft plateau in the stress-strain curve, with a characteristic stiffness αµ, which
coincides with the rotation of the director, as shown on the left of figure 1.38. If the clamping
conditions deny the required shears, then the following of the softest path is prohibited.
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Figure 1.37: (left) Nominal stress versus imposed strain and (right) the corresponding lateral
strains for a semi-soft nematic LCE [55].

A wide range of differing nematic elastomers exhibit qualitatively the same pattern of director
rotation [56]. This experimental data can be collapsed onto one single master curve given by
the semi-soft model, as shown on the right of figure 1.38. The optimal director rotation is,

θ = ± arcsin
[

r
r−1

(
1− λ1

λ

)] 1
2

, where λ1 =
(

r−1
r−αr−1

) 1
3

is the threshold to rotation.
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Figure 1.38: (left) The director rotation angle within the stripe domains [55]. (right) Experimental
director rotation data collapsed onto a master curve by using λ/λ1 as a relative deformation. The
solid line is

(
1− (λ1/λ)

2
)
[56].

Phenomenological Model of Nematic Elastomers

A uniaxial solid has 5 elastic coefficients, but a nematic elastomer can be treated as an approx-
imately isotropic elastic medium characterized by only two moduli; a shear modulus (C1) and a
bulk modulus (C2). A one-constant approximation can be made for the Frank elasticity, which
describes the energy cost of the director field.

The free energy can be written down in terms of the strain field, ǫij , and the relative rotation of
director and the network, Ωi. The energy can be written as a sum over a surface if the problem
can be simplified to 2D.

E =

∫
ds(

1

2
C1ǫ

2
ij +

1

2
C2ǫ

2
ii +

1

2
D1ΩiΩj +D2Ωiǫjknjδ

tr
ik) +

K

2
((∇ · n)2 + (n× (∇× n))2) (1.5)

Minimizing over the free variables gives solutions for the director reorientation.
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Weilepp and Brand [57] used this model to provide a description of nematic elastomers, which can
be taken as two dimensional phenomenon for sufficiently thin films, i.e. thinner than all than the
other length scales in the system.

The mechanism of instability is that the imposed stress gives rise to mechanical strains. The
coupling between strains and relative rotations via. D2 then leads to rotations of the director with
respect to the network, which are visible as stripes.

This model was criticized because the threshold strain is predicted to decrease with increasing
cross-linking density, which contradicts experimental results [58]. The model also implies values of
the threshold strain and elasticity constants that appear to be of the wrong magnitude.

The Weilepp and Brand model can be extended to smectic-A liquid single crystal elastomers [59]
to explain the instability found by Nishikawa and Finkelmann [19].

1.7 Theoretical Models of Smectic-A Elastomers

Adams-Warner Model

The Adams-Warner model is an extension of the Bladon, Terentjev, Warner model of nematic
elastomers to describe smectic elastomers [23]. The model includes an additional microscopically-
justifiable term to describe the elasticity of layers,

Fsmectic-A =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]
+

1

2
B

(
d

d0
− 1

)2

, (1.6)

where d/d0 is the change in smectic layer spacing and B is the smectic modulus. The model
assumes that the smectic layers are strongly coupled to the polymer matrix, and that the layers
deform like embedded planes. Consequently the orientation of the layer normal is simply a slave
to the deformation matrix, i.e.

k =
λ−T · k0
|λ−T · k0|

, (1.7)

and the change in the layer spacing is given by,

d

d0
=

1

|λ−T · k0|
. (1.8)

The director is assumed to be fixed along the layer normal, i.e. n = k. The bulk modulus of
the sample is much greater than the rubber or smectic moduli, so the elastomer can be taken
incompressible, i.e. detλ = 1. The Adams-Warner model successfully describes the Clark-Meyer

buckling instability in monodomain smectic-A elastomers, see figure 1.39. The models predicts the
instability to occur at a strain λc ∼ 1 + rµ/B when stretching parallel to the layer normal.

Figure 1.39: Schematic of the Clark-Meyer buckled microstructure. The stripes are shown with
width h and in each stripe the layer normal is oriented at ±φ to the stretch axis [23].
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The instability can be understood to occur due to the relative cost of stretching the layers versus
the cost of deforming by a shear λxz that rotates the layers (and other distortions which leave the
layer spacing unchanged). The energy cost of layer stretching is ∼ 1

2Bǫ
2, whereas for shearing the

energy cost is ∼ µrǫ [60]. Consequently the sample deforms by layer stretching for small strains
and by shearing the microstructure above the threshold strain, see figure 1.40.
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Figure 1.40: Nominal stress versus deformation parallel to n0. The solid line is the Adams-Warner
model and the points are experimental data from Nishikawa and Finkelmann.

Phenomenological model of Smectic-A elastomers

Stenull and Lubensky produced a phenomenological model of smectic-A elastomers [61]. It is a
free energy expansion in terms of the Cauchy-Saint-Venant strain tensor and the director, with
the terms chosen to be consistent with the symmetry of the smectic-A phase. The Cauchy-Saint-
Venant strain tensor, E = 1

2 (λ
T · λ − δ), has the property of removing rotations of the reference

state from λ.

The free energy of Stenull-Lubensky can be obtained by considering a slightly more general form
of the Adams-Warner model. In particular the tilt angle between director and layer normal is not
fixed in the Stenull-Lubensky model. The Stenull-Lubensky model includes a penalty for changing
the tilt angle and an additional semi-softness term. The theories become equivalent for small
strains once an energy penalty for modifiying the tilt angle is included [28, 62, 63].

1.8 Theoretical Model of Smectic-C Elastomers

Soft elasticity in Smectic-C Elastomers

Adams and Warner [64] introduce an energy model for smectic-C elastomers,

Fsmectic−C =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]
+

1

2
B

(
d

d0
− 1

)2

, (1.9)

where the tilt angle, θ, between n and k is taken as fixed at the initial value of θ0.

They show that there is only one non-trivial trajectory of the director that gives soft deformations,
which corresponds to the rotation of the director around the layer normal. In the stretching
geometry where k0 = z and n0 = (0, sin θ0, cos θ0), a soft response exists to an imposed λxx
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deformation. The soft deformation mode, λsoft, is given by,

λsoft =




1
a(φ)

(
1− ρ

r

)
sin 2φ
2a(φ)

(r−1) sin 2θ0
2ρ

(
sinφ−

(
1− ρ

r

)
sin 2φ
2a(φ)

)

0 a(φ) (r−1)
2ρ sin 2θ0(−a(φ) + cosφ)

0 0 1


 (1.10)

where a(φ) =
√
cos2 φ+ ρ

r sin
2 φ and ρ = sin2 θ0 + r cos2 θ0. The layer normal does not reorient

in this stretching geometry, because the imposed strain is perpendicular to k0. The angle that the
director has rotated around k0 is termed φ, so n = (sin θ0 sinφ, sin θ0 cosφ, cos θ0).

The axial extensions that can be achieved by director rotation in the soft mode are shown in figure
1.41(a). As the director rotates by π the sample width, λyy, first decreases and then increases back
to the original width. The sympathetic shears required to achieve a soft deformation are shown in
figure 1.41(b), and the soft-mode is illustrated in figure 1.41(c).

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

λxx
λyy

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3

φ

λxy
λxz
λyz

(a)

(b)

(c)

y

c

x

Figure 1.41: (a) The elongation and (b) shear components of the deformation matrix λsoft, for

the parameter values r = 2 and θ0 = 0.5 radians. (c) An illustration of these deformations for an
initially square LCE. The component of the director perpendicular to the layer normal is c.

The soft mode of equation (1.10) can be transformed to different starting configurations of the
director and layer normal by a set of rotation matrices. Adams and Warner [49] transformed the
soft mode to the case of stretching parallel to the layer normal, i.e. k0 = x, n0 = cos θ0x+ sin θ0y
and an imposed λxx. The components of the upper triangular deformation matrix deformation
matrix for this geometry are shown in figures 1.42(a) and (b).

Microstructural considerations are known to rule out soft deformations in some geometries of
stretching. Adams, Conti and DeSimone [65] showed that stretching a smectic-C monodomain
parallel to the director cannot be soft because there is no compatible deformation scheme of mi-
crostructure for this geometry.
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Figure 1.42: (a) The elongation and (b) shear components for the Sm-C soft mode stretching
parallel to k0, with r = 2 and θ0 = 0.5 radians. Initially k0 = x and n0 = cos θ0x+ sin θ0y.

1.9 Summary

Smectic elastomers are layered rubbery materials, composed of smectic phase liquid crystal meso-
gens cross-linked into a polymer matrix. At high temperatures the mesogens are oriented and
distributed isotropically, but at lower temperatures the mesogens align and form layers. The
alignment direction is termed the director, n, and the layer normal direction is denoted k. In
main-chain systems the mesogens are incorporated directly into the polymer chains, whereas in
side-chain systems the mesogens are attached pendantly. Typically the average path of polymer
chains is distorted to be follow the director, resulting in a prolate polymer chain distribution.

In the smectic-A phase the mesogens are arranged in layers, with the director and layer normal
parallel. Whereas in the smectic-C phase the director is at an angle θ to the layer normal, termed
the tilt angle. Cooling isotropic LCE into a smectic phase results in a randomly oriented polydomain
microstructure, because there is no preferred direction for n or k to form in. Typical the domains
are micron-sized for side-chain systems [16], but much smaller for main-chain systems, where the
folding of the polymer chain reduces the layer coherence [17].

To produce a macroscopic monodomain sample a preferred direction can be created by applying a
uniaxial load during sample manufacture. In smectic-A LCE uniaxial loading aligns the directors
with the stretch axis, resulting in a well ordered, transparent smectic-A monodomain [19]. In
smectic-C LCE this process aligns the director, but leaves a conical distribution of layer normals;
a configuration termed a pseudo-monodomain. To align a smectic-C monodomain an additional
stretch or shear can then be applied, which results in a uniform director and layer normal [35].

Nishikawa and Finkelmann observed a buckling instability when stretching a smectic-A mon-
odomain parallel to the director. Initially the elastomer deforms by layer stretching, with a modu-
lus ∼ 10MPa, but at a threshold strain ∼ 3% a sheared microstructure forms turning the sample
opaque [19]. Subsequent deformation rotates the layers and leaves the layer spacing unchanged, so
the modulus is much lower ∼ 0.1MPa. Later experiments on smectic-A monodomains observe a
similar stress-strain threshold, but no reorientation of the layers [25].

The Adams-Warner model of smectic elastomers consists of a smectic layer term and a nematic
elasticity term, which models the rotation and stretching of an anisotropic polymer chain dis-
tribution. The layers are assumed to deform like embedded planes, and the sample is taken as
incompressible [23]. This model predicts that for smectic-C elastomers the rotation of the poly-
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mer anisotropy gives rise to soft modes, where the director rotates around the layer normal [64].
However in the Stenull-Lubensky model these deformations are no longer perfectly soft due to an
additional semi-soft elasticity term, which models the destruction of softness due to defects. Also
the Stenull-Lubensky model does not assume the tilt angle is fixed at its initial value, instead there
is an energy penalty for changing the tilt angle [61].

The literature of mechanical experiments on monodomain smectic-A LCE is summarized below.
Noticeably samples with short layer correlation lengths, ξ, are not well described by current theory.

Smectic-A Elastomers

Experiment Experiment Description Fit with theory

Nishikawa and Finkel-
mann (1999) “Smectic-A
LSCE- strain induced break-
down of smectic layering”
(side-chain) [19]

Stretch parallel to n0.
A buckling instability is observed
at a threshold strain, and the
sample becomes optically opaque.
Dimensions: 1.6 cm × 1.0 cm ×
500µm. ξ ≈ 1.4µm.

Good. The buckling instability is de-
scribed by W-B, A-W and S-L models.
The reorientation of the layers is mod-
elled successfully with the assumption
that layers behave like embedded planes.
The S-L model suggests that the buck-
ling results in a non-zero tilt angle [61].

Komp and Finkelmann
(2007) “A New Type of
Macroscopically Oriented
Smectic-A Liquid Crystal
Elastomer”(side-chain) [25]

Stretch parallel to n0.
A strain threshold to a lower mod-
ulus is observed, but the sample
remains optically transparent. Di-
mensions: 2 cm × 4mm ×100µm.
ξ = 300 Å.

Poor. Is there a small misalignment of
the director with the stretch axis? Or
is the sample buckling only in its thick-
ness direction? If not then the number
of layer must be increasing, which is not
described by any model.

Kramer and Finkelmann
(2007) “Breakdown of Lay-
ering in Frustrated Smectic-
A Elastomers.” (side-chain)
[26]

Stretch parallel to n0.
The smectic structure may have
defects, as the two mesogens are
differently sized. Dimensions; not
stated. ξ = 400 Å.

Poor. The sample exhibits a smeared
out threshold, and is optically transpar-
ent above the threshold. The authors at-
tribute this behaviour to defects in the
smectic layer structure.

Beyer, Terentjev &
Zentel (2007) “Mon-
odomain Liquid Crystal
Main Chain Elastomers
by Photocrosslinking”
(main-chain) [38]

Stretch parallel to n0.
The sample was prepared via a
2 step photo-crosslinking process.
Dimensions: 15mm × 2mm ×
30µm. ξ is small.

Poor. The sample exhibits a weak
threshold at low temperatures, and is op-
tically transparent above the threshold.
The authors attribute this to the main-
chain chemistry giving a short smectic
layer correlation length.

Kramer and Finkel-
mann (2008) “Shear-
induced tilt in smectic-A
elastomers”(side-chain) [28]

Shear perpendicular to k0.
The sample is identical to
Nishikawa et al. (1999). Dimen-
sions: 7.4 × 5.0 × 0.45mm.

Good with S-L model. A tilt angle
of 6◦ is induced by a shear of 21◦. The
assumption of a fixed tilt angle in the
A-W model is only approximately true.

Stannarius et al. (2006)
“Mechanical manipulation
of molecular lattice param-
eters in smectic elastomers”
(side-chain) [45]

Stretch perpendicular to k0.
Multiple experimental techniques
measure no layer reorientation.
Dimensions: 1mm × 3mm ×
0.5µm (i.e. very thin)

Unclear. The film shrinks normal to the
smectic layers, indicating interlayer pen-
etration. The authors attributed this to
the UV cross-linking producing a micro-
scopically homogeneous sample.

The literature of experiments on smectic-C LCE is summarized in the following table. Most
experiments are performed on pseudo-monodomain and polydomain samples, which are not easily
relatable to theoretical descriptions of monodomains. There are no stress-strain curves reported
for stretching a monodomain smectic-C elastomer, which would directly probe current theory. The
reorientation of the layers observed in these experiments seems to suggest that the layer normal
are not strongly coupled to the rubber matrix.
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Smectic-C Elastomers

Experiment Experiment Description Fit with theory

Sánchez-Ferrer and
Finkelmann (2008) “Uni-
axial and Shear Deformations
in Smectic-C Main-Chain
Liquid Crystal Elastomers”
(main-chain) [15]

Pseudo-monodomain
stretching parallel and
perpendicular to n0.
Dimensions: not stated.
ξ ∼ 400 Å.

Poor. Stretching parallel to n0 the high
stiffness is surprising, as a monodomain
would theoretically deform at the rubber
modulus. Stretching perpendicular to n0

the director aligns with the stretch axis
at high strains, which is not expected if
the layers are embedded planes.

Sánchez-Ferrer and
Finkelmann (2011)
“Polydomain-Monodomain
Orientational Process in
Smectic-C Main-Chain
Liquid-Crystalline Elas-
tomers” (main-chain) [34]

Polydomain to pseudo-
monodomain transition.
Dimensions: not stated.
ξ ∼ 380 Å.

Poor. Unexpectedly at high strains the
director aligns with the stretch axis and
the layer normals do not rotate to away
from the stretch axis. The cause of the
plasticity associated with layer reorien-
tation is not well understood.

Hedden et al. (2009)
“Necking Instability during
Polydomain-Monodomain
Transition in a Smectic
Main-Chain Elastomer”
(main-chain) [33]

Polydomain to pseudo-
monodomain transition.
Initially the sample is stiff,
then necking forms a pseudo-
monodomain. Dimensions:
7mm × 1.15mm × 0.4mm.

Poor. The layer normals do not rotate
away from the stretch axis. The au-
thors argue that the necking transition
is due to hairpin chains unfolding, and
that smectic domains may form.

Ren, McMullan, and
Griffin (2008) “Pois-
son’s Ratio of Mon-
odomain Liquid Crystalline
Elastomers”(main-chain) [39]

Pseudo-monodomain
stretched parallel to n0.
Dimensions: not stated.

Poor. The behaviour is similar to
that observed by Sánchez-Ferrer et al.,
except that when stretching pseudo-
monodomain perpendicular to n0 neck-
ing occurs.

Hiraoka et al. (2005)
“Biaxial Shape Memory
Effect Exhibited by Mon-
odomain Chiral Smectic-C
Elastomers” (side-chain) [37]

Thermal cycling of a Sm-
C monodomain results in
spontaneous shearing.
The sample was 8.5mm long in
the smectic-A phase.

Good. The macroscopic shape changes
indicate that the polymer chain distri-
bution is influenced by the smectic-A to
smectic-C phase transition as expected.

Heinze and Finkelmann
(2010) “Shear Deformation
and Ferroelectricity in Chi-
ral SmC* Main-chain Elas-
tomers” (main-chain) [20]

Pseudo-monodomain
sheared perpendicular
to n0.
Dimensions: ξ ∼ 850 Å.

Good. The reorientation of the layer
normals is a complicated, but qualita-
tively agree with the A-W model.

Schüring et al. (2001)
“Liquid Crystal Elastomer
Balloons” (side-chain) [42]

Biaxial stretch perpendicu-
lar to k0. Pressure and radius
measurements were made in the
isotropic and smectic phases.
Balloon radius ∼ 2mm, and
thickness ∼ 1− 5µm.

Unclear. The biaxial stretch is ex-
pected to reduce the layer spacing, but a
characteristic smectic modulus is never
observed. This may be result from the
UV cross-linking process, and the high
cross-linking density.
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Modelling Semi-Soft Smectic-C LCE

In this chapter a constitutive model of a semi-soft, smectic-C LCE monodomain is described. This
model is used to investigate stretching of a microscopic monodomain in various geometries, by
imposing one deformation component and minimizing the energy with respect to the remaining
free components. The minimization of this free energy is not analytically soluble, due to the
complication of the constraint on the director. Therefore computational techniques are used to
derive stress-strain curves from the constitutive model.

2.1 Smectic-C Monodomain Model

Monodomain smectic-C elastomer has an initial director n0 and layer normal k0 arranged at a tilt
angle θ0, see figure 2.1. The tilt angle is assumed to vary with strain, so after deformation the
director n and layer normal k are arranged at a tilt angle θ, i.e. n · k = cos θ.

y
x

z
θ0

n0
k0

Figure 2.1: A monodomain of smectic-C LCE.

The layers are taken as embedded planes, so the layer normal orientation is simply a slave to the
deformation matrix,

k =
λ−T · k0
|λ−T · k0|

, (2.1)

and the material can be taken as incompressible, i.e. detλ = 1.

The free energy of a monodomain can be modelled as having four contributions;

1) The smectic layering elasticity, Fsmectic, is the enthalpic cost of changing the layer spacing.
Changing the layer spacing is the stiffest deformation mode by an order of magnitude.

Fsmectic =
1

2
B

(
d

d0
− cos θ

cos θ0

)2

(2.2)

where d0 is the initial layer spacing, d is the final layer spacing and
d

d0
=

1

|λ−T · k0|
.

31
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2) The nematic elasticity, Fnematic, is the entropic elastic energy of stretching or rotating an
anisotropic chain network,

Fnematic =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]
(2.3)

where µ is the rubber shear modulus, ℓ0 = δ + (r − 1)n0 n
T
0 is the polymer anisotropy tensor and

ℓ−1 = δ + (1r − 1)nnT is the inverse of ℓ0.

3) The semi-softness elasticity, Fsemi−soft, is a small modification to the nematic energy term
due to various non-idealities of the sample. The non-idealities could be any defects that eliminate
the isotropy of the undeformed sample, e.g. anisotropy of crosslinking [66]. Biggins et al. [67]
proposed a completely general semi-soft form up to quadratic order for nematics. The most general
energy that is quadratic in λ takes the form,

F =
∑

i,j

Tr
[
Ai · λ · Bj · λ

]
, (2.4)

where Ai and Bj are constructed out of vectors and scalars from the reference and target states

respectively. If the reference state is characterized by a single direction n0 and the final state by n
then the most general energy is,

F = Tr
[
Hλ · λT + Jn0 n

T
0 · λ · λT +Kn0 n

T
0 · λT · nnT · λ+ LλT · nnT · λ

]
. (2.5)

Typically these constants are chosen so that the semi-soft energy has the form

Fsemi−soft =
1

2
µαTr

[
λ · (δ − n0 n

T
0 ) · λT · nnT

]
. (2.6)

In smectic elastomers there are new possible sources of non-ideal behaviour, and new directions
in the problem such as the layer normal. However it will be assumed that the semi-soft energy
in smectics has the same form as in nematics. Conti et al. [68] used a neo-Hookean form of

the semi-soft energy, F = 1
2Tr

[
λ · λT

]
to regularize the ideal nematic free energy, and a uniax-

ial neo-Hookean term in [69]. These terms produce similar behaviour to the nematic semi-soft term.

4) The tilt elastic energy, Ftilt, penalizes deviations of the tilt angle away from θ0,

Ftilt =
1

2
at
[
cos2 θ0 − (n.k)2

]2
, (2.7)

where at is the tilt modulus and n · k = cos θ. The tilt modulus is typically large compared to
the shear modulus at ≫ µ, so the tilt angle remains close to θ0 [28]. It is convenient to define the
dimensionless tilt modulus c = at/µ.

Summation of the four energy contributions yields the smectic-C energy;

FSm−C =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]
+

1

2
αµTr

[
λ · (δ − n0 n

T
0 ) · λT · nnT

]

+
1

2
B

(
d

d0
− cos θ

cos θ0

)2

+
1

2
cµ
[
cos2 θ0 − (n.k)2

]2
. (2.8)

Any correct description of the smectic-C system should be unchanged by the operations n → −n
and k → −k. This is because the director and layer normal are quadrupolar objects, i.e. they are
double-headed vectors. Also the description should be invariant under rotations of the reference
space. The energy, FSm−C , satisfies these symmetry conditions.

This investigation will ignore the effect of clamping at the boundaries, and focus on the deformation
of sheets of Sm-C elastomer whose mechanical properties will be dominated by the deformation of
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the material in the middle of the long sheet. The elongations considered will be in the x direction,
i.e. imposing the λxx component, together with the induced shear deformations. The appropriate
deformation matrix is

λ =




λxx λxy λxz
0 λyy λyz
0 0 λzz


 . (2.9)

The components λyx and λzx are set to zero as they would be resisted by countertorques when
applying a load in the x direction. The uniaxial symmetry of the deformation means that λ can be

arbitrarily rotated around the extension axis, and this freedom has been used to set λzy to zero.
The constraint of incompressibility can be used to set λyy = 1/λxxλzz.

In experiment, imposed stress ensembles are often used, which yield the same results when the
stress-strain curve is monotonic. However, some of the stress-strain curves calculated here are
non-monotonic; hence there are several strain values for a single stress value. In this case there is a
difference between the fixed stress and fixed strain ensembles, and for fixed stress a Maxwell con-
struction must be used to determine the strain. This is described in [63] and briefly in section 2.3.

Auxetic Behaviour

An unusual property of some Sm-C soft modes is their negative Poisson’s ratio, albeit it in
one direction only. The soft mode when stretching parallel to the layer normal is illustrated in
figure 2.2. The λzz component increases with imposed λxx, i.e. the sample expands in the direction
perpendicular to the imposed elongation. This is because the constraint of an approximately fixed
tilt angle between the layer normal and director results in the director rotating into the z direction.
The sample then laterally expands to accommodate the anisotropic chain shape.

Figure 2.2: Illustration of auxetic behaviour stretching parallel to k0. The director (red) moves
out into the z direction, causing a lateral expansion of the sample, while maintaining the initial
tilt angle with respect to the layer normal (white).

To the author’s knowledge this mechanism for negative Poisson’s ratio has not been reported before.
The microstructure formed by LCEs during deformation may prevent the observation of negative
Poisson’s ratio for some deformations, and this is discussed further in section 2.3. Alternative
mechanisms of producing auxetic behaviour based on modifying the attachment of mesogens to
the polymer backbone in smectic LCEs have been proposed and investigated experimentally [40, 70].

For isotropic materials, the Poisson’s ratio must be in the range−1 < ν < 0.5. LCEs are anisotropic
materials, so have Poisson’s ratios outside this range. As the materials considered here are volume
conserving, the Poisson’s ratio in the y direction is νyy = 1− νzz. When stretching parallel to the
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layer normal, the Poisson’s ratio for θ0 > 0 is given by

νzz = − dλzz
dλxx

∣∣∣
λxx=1

= − 1

(r − 1) cos2 θ0
. (2.10)

Substituting in typical values of θ0 ∼ 0.5 radians, and r ∼ 2 for a side chain system produces
ν ∼ −1.3. When compared with other auxetic materials [71] this is a more negative Poisson’s
ratio, corresponding to a larger rate of expansion (albeit in only one direction here). The extent
of the soft mode in this geometry is

λxx =

√
1 +

(r − 1)2

ρ2
sin2 2θ0, . (2.11)

To illustrate the expansion of the LCEs on elongation here, we will use the incremental Poisson’s
ratio (IPR) defined by

νzz = − dλzz
dλxx

, (2.12)

where an elongation λxx is imposed and λzz is the transverse deformation.

Computational Minimization

The free energy for a monodomain of smectic-C LCE is sufficiently complicated to render analytic
minimization impossible. This is in contrast to the case of a semi-soft nematic elastomer where the
behaviour is analytically soluble in some geometries. The additional difficulty in smectic-C LCE
arises because of the non-linear constraint on the director, i.e. it is constrained to rotate around
the layer normal.

The absence of analytical solutions means that computational minimization algorithms are required
to minimize the free energy and derive a stress-strain curve. When the elastomer undergoes a
deformation step its deformation components relax to find the configuration of the lowest energy,
and a minimization algorithm is used to find this configuration. A programming implementation
to minimize the smectic-C energy is included as appendix A.

The energy minimization problem for an imposed λxx is;

Minimize
λxy,λxz ,λyz ,λzz,n

FSm−C(λxx, λxy, λxz, λyz, λzz , n)

subject to |n| = 1, |k| = 1 and n · k = cos θ.
(2.13)

The constraint of the tilt angle of θ between the layer normal and director can be encoded as

n = c sin θ + k cos θ, (2.14)

where c is a unit vector perpendicular to k. A particular basis is required to express c. It is
convenient to use the unit vector c0, the starting orientation of c, and c0 × k0. The vector c can
be expressed as

c = a cosφ+ b sinφ, (2.15)

where a ∝ c0−k(c0 ·k) is a unit vector constructed from the component of c0 that is perpendicular
to k. The unit vector b = k×a is perpendicular to both a and k, see figure 2.3. Hence in the initial
configuration φ = 0, and a = c0.

b̂
c0

âk0k

b

a

c0

k
k0

Figure 2.3: An illustration of the vectors a and b used in the numerical calculations.
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2.2 Tensile Deformations of Monodomain Smectic-C Elastomers

Tensile deformations of monodomains in five different geometries were investigated. These were
chosen in light of the pseudo-monodomain stretching experiments of Sánchez-Ferrer and Finkel-
mann [15], and reflect likely choices for future investigations.

Figure 2.4: The director and layer normal orientations for the five elongations considered: (a)
parallel to n0, (b) perpendicular to k0 and n0, (c) parallel to k0, (d) perpendicular to n0, with k0
coplanar, and (e) at an angle ψ to k0.

Algorithms

Successful computational minimization requires finding the global energy minimum not just a local
minima. The degree of difficulty is strongly dependent on the geometry of deformation. The five
geometries investigated here are shown in figure 2.4. A particularly simple case is (b), because
the layer normal does not reorient in this geometry. The most difficult case is (d), as the director
orientation is discontinuous at a critical strain. This makes reliable minimization challenging, as
two energy minima exist that are separated in parameter space by an energy barrier.

A variety of pre-existing algorithms were employed in an attempt to robustly minimize FSm−C .

i) A simplex algorithm, E04CCF from the NAG library [72]. This algorithm works for the
easy geometry of stretching parallel to the director. For more difficult geometries it is generally
unsuccessful in finding a global minimum rather than local minima.

ii) A sequential quadratic programming algorithm, nag con nlin lsq from the NAG library
[73]. This algorithm is designed to solve constrained nonlinear least-squares problems. It directly
handles the constraints using Lagrange multipliers. It fails completely for the difficult case of
stretching perpendicular to the director, with the layer normal coplanar.

iii) A genetic algorithm, Pikaia by the High Altitude Observatory [74]. Using default con-
trol parameters the algorithm is significantly slower than the NAG algorithms, taking around 1
second to perform a minimization. The algorithm is partially reliable for the case of stretching
perpendicular to the director, with the layer normal coplanar.

iv) A simulated annealing algorithm, SIMANN by Goffe et al. [75], can reliably minimize the
energy even in difficult cases. Simulated annealing is more robust because it is designed to initially
accept moves away from local minima thus exploring the parameter space more thoroughly. The
computational results were produced using simulated annealing, then further refined using the
sequential quadratic programming algorithm.
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Computational Results: Elongations of Smectic-C Elastomers

The model has the parameters µ, at, B, r and θ0. Typically, θ0 ∼ 30◦ [20], B/µ ∼ 60 in well ordered
samples [16, 19, 21], at/µ = c & 1 in smectics [28, 62], and r ∼ 2 in side chain liquid crystalline
polymers [60, 76]. Petelin et al. measured α ∼ 0.1 in nematic elastomers [77], and similar values
are expected in smectics. These parameter values will be used to illustrate the behaviour of the
model in the following computational investigation.

A. Elongation Parallel to n0

The first deformation considered is stretching parallel to the director, i.e. imposing λxx with n0 = x
and k0 = cos θ0x+ sin θ0z.
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Figure 2.5: (a) The stress-strain response for a semisoft Sm-C elastomer stretched parallel to n0.
The model parameters are B/µ = 60, r = 2, θ0 = 0.5, and the values of (α, c) shown in the figure.
(b) Director and layer normal reorientation, for (α, c) = (0.05, ∞).

The stress-strain response is shown in figure 2.5(a) for the case of a fixed tilt angle. The stiffness
is characteristic of the rubber modulus, as the energy is incurred almost entirely by the nematic
elasticity term (the layer spacing is unchanged by the stretch). The reorientation of the layer
normal and director is shown in figure 2.5(b). Because the layers deform as embedded planes the
layer normal reorients to become perpendicular to the stretch direction as λxx → ∞, and the
director follows at the tilt angle.

The components of the deformation matrix are shown in figure 2.6(a) and (b). The behaviour in
the lateral directions is anisotropic due to the rotation of the polymer anisotropy. Only the λxz
shear component is non-zero.

-0.16

-0.12

-0.08

-0.04

0

0.04

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

λxx

λxy
λxz
λyz

0.84

0.88

0.92

0.96

1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

λxx

λzz
λyy

(a) (b)

Figure 2.6: (a) The diagonal and (b) shear components of the deformation tensor when stretching
parallel to n0, for parameter values of (α,B/µ, c, θ0, r) = (0.05,60,∞,0.5,2).
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B. Elongation Perpendicular to k0 and n0

The deformation considered is stretching perpendicular to the initial layer normal and director, i.e.
imposing λxx with k0 = z and n0 = cos θ0z + sin θ0y. The layer normal does not reorient in this
geometry, as it is perpendicular to the stretch direction.
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Figure 2.7: (a) The stress and (b) the angle of rotation for a semisoft Sm-C elastomer stretched
perpendicular to k0 and n0. The model parameters are B/µ = 60, r = 2, θ0 = 0.5, and the
values of (α, c) shown in the figure. The thick curves (green) are from the more general numerical
relaxation, and the black curves are calculated using the decomposition of the deformation matrix.
(c) Director and layer normal reorientation for (α, c) = (0.05, ∞).

In the absence of the semi-softness term of equation (2.6) this deformation is a smectic-C soft
mode, which is described analytically in section 1.10. However the full free energy can only be
minimized numerically. The resulting stress-strain curve, and the orientation of the director of this
minimisation are shown in figures 2.7(a) and (b) by the thick (green) lines.

For the ideal Sm-C elastomer, the soft plateau ends at λxx =
√
r/ρ, as can be seen from the soft

mode in equation (1.10). The plateau ends when the director has completed a rotation by π/2
around the layer normal. For non-zero values of α the onset of rotation of the layer normal is
delayed, and it never finishes a full π/2 rotation. This is evident in the stress-strain curve, because
the well defined stress plateau for α = 0 becomes progressively less sharply defined. For α ∼ 0.01
there is a pronounced stress plateau, but for larger values of α ∼ 0.1 there is no plateau, merely
a knee in the stress-strain curve. Figures 2.7(a) and (b) also shows the effect of reducing the tilt
modulus c. The knee in the stress strain curve becomes less pronounced, and the rubber hardens
more slowly for larger values of λxx.

The retardation of the director rotation may be significant for piezoelectric response of these
materials. There would be no piezoelectric response until the strain was above the threshold. The
potential difference across the sample would be lower in semi-soft samples because the alignment
of the electric dipoles associated with director rotation is spread over a much larger deformation
range.

The deformation components when stretching perpendicular to k are illustrated in figure 2.8. Note
the sympathetic shears that accompany the director rotation are persistent, because the director
rotation is never completed if α > 0.

Numerically it is clear that with the inclusion of the semi-soft term there is a delay in the rotation
of the director. The director rotation path is shown in figure 2.7(c). Some analytical progress
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Figure 2.8: (a) The diagonal and (b) shear components of the deformation tensor when stretching
perpendicular to k0 and n0, for (α,B/µ, c, θ0, r) = (0.05,60,1,0.5,2). The sympathetic shears persist,
as the director rotation never completes its π/2 rotation.

can be made in this geometry by decomposing the deformation into three parts; the initial hard
deformation with fixed director and layer spacing denoted λhard, the soft mode λsoft and the

subsequent shear and elongation after the soft mode λ′ [49],

λ = λ′ · λsoft · λhard, (2.16)

where λhard = diag(λ1, 1/λ1, 1), λsoft given in equation(1.10), and

λ′ =




ζ 0 η
0 1/ζ 0
0 0 1


 . (2.17)

This deformation matrix can be substituted into the free energy terms of equation (2.2), (2.3), and
(2.6) (assuming that c→ ∞, so that θ = θ0). The problem is then reduced to a minimization over
the variables λ1, ζ, η and φ, with the constraint that the total λxx is prescribed. The threshold
before the onset of director rotation can be calculated by setting ζ = 1 and η = 0, then performing
a series expansion of the free energy in soft mode rotation angle φ. The leading term is O(φ2), and
when this term becomes negative a non-zero value of φ will lower the free energy. To leading order
in (λ1 − 1), this coefficient becomes negative when λ1 is approximately

λ1 = 1 + 8r2α/(1 + 29r − 29r2 − r3 + rα + 35r2α (2.18)

+4r2α cos 2θ + (r − 1)((r − 1)2 + rα) cos 4θ)

This value is slightly smaller than the corresponding threshold to director rotation in nematic
elastomers of λ31 = r−1

r−1−αr [60]. Intuitively this is because in the Sm-C phase the deformation
is restricted to two dimensions by the layer spacing constraint. Consequently there is a larger
contraction in the direction perpendicular to the stretch which causes the elastic free energy to rise
faster, and hence the director rotation to start earlier in Sm-C LCEs as compared to the nematic
phase.

The minimization of the free energy over λ1, ζ, η and φ produces results that are in good agreement
with the more general numerical method. These results are shown by the black lines in figures
2.7(a) and (b).
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C. Elongation Parallel to k0

The deformation considered is stretching parallel to the initial layer normal, i.e. imposing λxx with
k0 = x and n0 = cos θ0x+ sin θ0z.

n
k

0.8

0.85

0.9

0.95

1

nx,kx

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ny,ky

0
0.1
0.2
0.3
0.4
0.5
0.6

nz,kz

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ
N

(α,C)=(0.0,∞)
(α,C)=(0.05,∞)
(α,C)=(0.05, 1)

-1.5

-1

-0.5

0

0.5

1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

ν z
z

λxx

n0

k0

(c)

(b)

(a)

Figure 2.9: (a) The stress-strain response for a semisoft Sm-C elastomer stretched parallel to the
layer normal. The model parameters are B/µ = 60, r = 2, and θ0 = 0.5, and the values of (α, c)
shown in the figure. (b) The corresponding IPRs for the stress-strain curves. (c) Director and layer
normal reorientation for (α, c) = (0.05, ∞).

The stress-strain response is shown in figure 2.9(a) for various values of the semi-soft parameter α.
For c → ∞ the first part of the stress-strain curve is determined by the smectic layer modulus B.
The semi-soft term prevents the rotation of the director, and the layer spacing increases. Once the
force required to increase the layer spacing is comparable to that required to rotate the director
the semi-soft mode begins. The stress-strain curve has negative slope once director rotation starts.

As explained in figure 2.2 there is a negative incremental Poisson’s ratio in this geometry as the
director rotates around the layer normal into the direction perpendicular to the stretch axis. The
IPR is shown in figure 2.9(b). The lateral expansion, combined with the free energy expression for
the semi-soft elasticity, results in the negative stiffness. For larger values of α the Poisson’s ratio
becomes less negative.
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Figure 2.10: (a) The diagonal and (b) shear components of the deformation tensor when stretching
parallel to the layer normal, for parameter values of (α,B/µ, c, θ0, r) = (0.05,60,∞,0.5,2).

The rotation of the layer normal and director is illustrated in figure 2.9(c) for the case of a fixed tilt
angle, and the corresponding deformations are shown in figure 2.10. The expansion of the sample
in the y direction is clearly visible at the onset of rotation, as are the usual shear components that
accompany a soft mode. For finite values of c the deformation becomes more complicated; before
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the threshold the director rotates towards the layer normal and the sample shears, which itself
results in movement of the layer normal. There is both an increase in the threshold to the start
of rotation, and a reduction in the amplitude of the semi-soft deformation. This is because the
shearing before director rotation results in rotation of the layer normal, and there is a reduction in
the tilt angle before the onset of shearing.

Negative stiffness from the Soft Mode

In the limit of small α the semi-soft term is a small perturbation to the nematic and smectic terms.
If the geometry permits soft deformation then to a good approximation the deformation is the
smectic-C soft-mode. The soft mode deformations in some geometries result in a negative stiffness
when combined with the semi-soft energy term.

The soft-mode for stretching perpendicular to k0 and n0 is described by equation (1.10). Putting
this deformation into the semi-soft energy term curve results in a monotonic stress-strain curve, as
shown in figure 2.11(a).
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Figure 2.11: (a) The stress-strain response stretching perpendicular to k0 and n0 for the soft-mode
(green) and numerical minimization (black). (b) The stress-strain response stretching parallel
to k0 for the soft-mode (green) and numerical minimization (black). The parameter values are
(α,B/µ, c, θ0, r) = (0.01,60,∞,0.5,2).

The soft-mode for stretching parallel to k0 can be found by a suitable rotation of λsoft. Combining

this soft-mode with the semi-soft energy term results in non-monotonic stress-strain curve, see
figure 2.11(b). The root cause of the negative stiffness can be investigated with a scalar model.

Scalar model of the negative slope region

The unusual response above for the Sm-C soft mode can be illustrated for a simpler deformation.
Consider an elongation with a diagonal deformation matrix of an imposed λxx, λzz given by

λzz = 1−A

(
λxx −

3

2

)2

+
A

4
, (2.19)

with λyy determined by volume conservation. The parameter A here controls the initial rate of
expansion of the material. Its Poisson’s ratios are −A, and 1+A. This is similar to the Sm-C soft
mode in illustrated in figure 1.42. The deformation in equation (2.19) can be substituted into a
neo-Hookean model of the form,

FNeo−Hookean = 1
2µTr

[
λ · λT

]
, (2.20)

which is broadly similar to the semi-soft elastic energy term. The resulting stress-strain curve is
shown in figure 2.12. It can be seen from this plot that for sufficiently large values of A the stress-
strain curve has a negative slope similar to stretching the Sm-C LCE parallel to the layer normal.
For some geometries the Poisson’s ratio is sufficiently negative to result in a negative stiffness. The
configurational entropy of the perpendicular degrees of freedom decreases as the sample expands
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resulting in a positive contribution to the stress. Once lateral expansion starts to slow sufficiently
there is a weaker contribution to stiffness of the sample from the perpendicular degrees of freedom
and the stress starts to drop, which produces a negative slope in the stress-strain response. By
tuning the parameter A in the model, the balance between the parallel and perpendicular degrees
of freedom can be altered, and the stiffness changed from negative to positive.

This scalar model shows that the negative stiffness is a result of the lateral expansion during the
Sm-C soft mode, and not solely due to the form of the semi-soft elastic term.
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Figure 2.12: For the scalar model of the negative stress strain curve described in the text, (a) shows
the stress-strain curves for A = 0.5, 0.75, 1, and (b) the deformation components for A = 1.
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D. Elongation Perpendicular to n0, with k0 coplanar

Stretching perpendicular to the initial layer normal is illustrated in figure 2.4(d). The results for
the numerical calculation of the stress-strain curve for this geometry are shown in figure 2.13(a).
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Figure 2.13: (a) The stress-strain response for a semisoft Sm-C elastomer stretched perpendicular
to n0. The model parameters are B/µ = 60, r = 2, and θ0 = 0.5, and the values of (α, c) shown in
the figure. (b) The corresponding IPRs for the stress-strain curves. (c) Director and layer normal
reorientation for (α, c) = (0.05,∞).

This geometry has the remarkable feature that νzz → −∞ when α→ 0, as shown in figure 2.13(b).
For larger values of α the Poisson’s ratio becomes less negative. The jump in the director also
causes a discontinuity in the IPR, and a sudden increase in the width of the sample. Note that in
this geometry there is a discontinuity in the stress-strain curve, in addition to the negative stiffness.
The discontinuity in the stress-strain curve is accompanied by a jump in the director as shown in
figure 2.13(c), and the corresponding deformations are shown in figure 2.14.
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Figure 2.14: (a) The diagonal and (b) shear components of the deformation tensor when stretching
perpendicular to the director, for parameter values of (α,B/µ, c, θ0, r) = (0.05,60,∞,0.5,2).

Intuitively the discontinuity arises because when the director jumps the long axis of the polymer
shape tensor jumps towards the elongation direction. Consequently the natural length of the rubber
in this direction is increased, so there is corresponding drop in the stress.

The jump in the director can be understood from the properties of the soft mode in this geometry.
The first part of the total deformation (until the end of director rotation) can be approximated as
a hard deformation where there is no director rotation, followed by a soft mode

λ = λsoft · λhard. (2.21)
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The amplitude of the soft mode in this geometry can be calculated analytically to be

λxx =
(
3 + r(7r − 2) + 4(r2 − 1) cos 2θ0 + (1 + (2− 3r)r) cos 4θ0

)1/2
/(2

√
2ρ). (2.22)

The hard part of the deformation has only diagonal elements, and an xz shear component.

λhard =




λxx 0 λxz
0 1/(λxxλzz) 0
0 0 λzz


 . (2.23)

Substituting this into the full free energy density yields an approximate solution to the minimization
problem, where the director rotation is assumed to be continuous. The free energy density in this
case is shown in figure 2.15.
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Figure 2.15: The free energy calculated numerically (dashed black), and the free energy trajectory
of the semisoft mode with continuous director rotation (thick green) when stretching perpendicular
to the director. The parameter values are (α,B/µ, c, θ0, r) = (0.05,60,∞,0.5,2)

The analytic solution with continuous director rotation has higher free energy for the first part of
the deformation. Hence, the elastomer initially stretches without director rotation. If the director
were to start rotating, then the form of the soft mode results in rapid rotation of the director, and
an infinite slope in the free energy. However, the rate of increase slows, and eventually the state
with a rotated director is lower in free energy than that with a fixed director. At this point the
director jumps to the new orientation. There is a discontinuity in the slope of the free energy at
this point, or equivalently a jump in the stress.

The energy landscape responsible for the director instability is illustrated in figure 2.16(a).
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Figure 2.16: (a) FSm−C versus imposed λxx and imposed φ, for (α,c) = (0.01,∞). The remaining
free variables, λxy, λxz , λyz and λzz , are minimized over. (b) Cross-sections through the energy
landscape at values of constant λxx.

The transition between the unrotated and rotated director states is similar to a first order phase
transition, i.e. a transition occurs when two energy wells become equal in energy. In figure 2.16(b)
the depth of the two energy wells becomes equal for λxx = 1.035. The results show that the
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unrotated state, φ = 0, is always a local energy minimum for any value of imposed λxx and would
therefore be metastable for all values of λxx. A more realistic description of the transition would
consider the scale of energy fluctuations relative to the energy barrier to director rotation.

The gradient of this energy landscape with respect to φ is shown in figure 2.17(a). The contour of
∂FSm−C

∂φ = 0 is plotted figure 2.17(b). The contour plot shows that at a critical value of λxx there
is a bifurcation point. Points on the top half of the bifurcated curve have minimal values of energy,
whereas points on the bottom have maximal values of energy.

1
1.05

1.1
1.15

1.2 0
0.5

1
1.5

2
2.5

3-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0

λxx

φ

-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08 0

1 1.05 1.1 1.15 1.2

λxx

0

0.5

1

1.5

2

2.5

3

φ

∂FSm−C
∂φ

(a) (b)

Figure 2.17: (a) ∂FSm−C

∂φ versus λxx and φ, for (α,c) = (0.01,∞). (b) Contour of ∂FSm−C

∂φ = 0.

The director instability is not solely a result of the semi-soft energy term, but again is a result of
the shape of the soft mode, combined with a general semi-soft elasticity term. These calculations
are based on an equilibrium model of a Sm-C elastomer. In practice kinetic terms, such as viscosity
would smooth out the sharp jump demonstrated here.

Scalar Model Describing Stress Discontinuity

The semi-soft behaviour of Sm-C elastomers is characterised by two deformation modes; before
the onset of director rotation, and afterwards. A scalar model that exhibits the same behaviour
when stretching perpendicular to the director can be developed based on representing each of these
deformation modes as a spring, and deforming the two springs in series. The total strain is the sum
of two deformation modes corresponding to keeping a fixed director ǫU, and rotating the director
ǫSM

ǫT = ǫU + ǫSM. (2.24)

The two modes of deformation have different energy penalties, the first arises from a simple uniaxial
deformation, so in a neo-Hookean energy model will result in a free energy term of the form

FU = 1
2K1ǫ

2
U, (2.25)

where K1 corresponds to the shear modulus of the rubber. The second arises from the soft mode,
which has a singular edge in the contraction of the rubber as it is stretched. The zz component in
the soft mode is initially of the form λzz = 1/(1 + (λxx − 1)β) (where here λxx − 1 = ǫSM. When
this is put into the neo-Hookean free energy, it results in free energy terms to leading order in ǫSM
of the form

FSM = 1
2K2ǫ

β
SM (2.26)

where K2 is the corresponding shear modulus for this mode. In the case of the semi-soft Sm-C
elastomer, this term arises because of the rapid rotation of the director during the start of the soft
mode.

The total free energy is then

FT = 1
2K(ǫT − ǫSM)2 + 1

2K2ǫ
β
SM, (2.27)

where first spring in this system is hookean, and the second is non-linear, being infinitely stiff at
zero strain for 0 < β < 1, but softening rapidly as strain increases. This should be minimized over
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ǫSM to determine the distribution of strain between the two springs. It can be solved analytically
for β = 0.5. The behaviour of this model is illustrated in figure 2.18(a). For small β this system has
a discontinuity in the stress-strain curve, but as β is increased the stress-strain response becomes
continuous.
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Figure 2.18: (a) An illustration of a discontinuous stress-strain curve for the scalar model described
in the text, (b) the free energy as a function of the variable ǫSM for fixed total strain values. Here
K1 = 10 and K2 = 1.

The free energy as a function of ǫSM is illustrated in figure 2.18(b). For small values of ǫT there is
only one minimum at ǫSM = 0, corresponding to no strain of the second spring. However, as the
total strain increases, the second mode of deformation becomes activated and there is a minimum
for larger values of ǫSM. Since there is a barrier between the two minima, the transition is first
order, so there is a jump in the equilibrium value of ǫSM. For larger values of β the phase transition
becomes continuous, and the stress-strain curve no longer exhibits a jump.

This behaviour is analogous to that of the semi-soft Sm-C elastomer as the free energy exhibits
a discontinuity when stretched perpendicular to the director (where the soft mode has a singular
edge). Larger values of β correspond to stretching at a larger angle to the director, where the soft
mode does not have such a rapid rotation of the director, and a corresponding sharp drop in the
lateral dimension. If the angle between the director and the elongation direction is large enough,
then the stress-strain response becomes continuous.

E. Elongation at an angle ψ to k0

Stretching at an angle ψ to the initial layer normal is illustrated in figure 2.4(e). The numerical
solution of stress-strain curve associated with this geometry is shown in 2.19(a).

The stress-strain curve is continuous in this geometry, but again has a pronounced negative slope.
There is a negative IPR of ∼ −1.5 that is roughly independent of the semi-soft parameter, see
2.19(b). The rotations of the director and layer normal are shown in figure 2.19(c), with the
accompanying deformations shown in figure 2.20.
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Figure 2.19: (a) The stress-strain response for a semisoft Sm-C elastomer stretched at an angle
ψ = 0.65 radians to k0. The model parameters are B/µ = 60, r = 2, and θ0 = 0.5, and the values
of (α, c) shown in the figure. (b) The corresponding IPRs for the stress-strain curves. (c) Director
and layer normal reorientation for (α, c) = (0.05, ∞).
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Figure 2.20: (a) The diagonal and (b) shear components of the deformation tensor when stretching
at an angle ψ = 0.65 radians to k0, for parameter values of (α,B/µ, c, θ0, r) = (0.05,60,∞,0.5,2).

2.3 Discussion

Soft deformations in nematic LCEs are only possible in clamped samples with the formation of
microstructure. This has been shown by detailed X-ray experiments [78], and by numerical study
[68, 69], and is a result of the non-convex energy of nematic LCEs [79]. The characteristic stress-
strain response of Sm-A elastomers [19] also exhibits microstructure if the sample is clamped during
stretching [80]. The clamps required in experimental investigation of the Sm-C samples considered
here would result in microstructure formation, and some changes to the stress-strain response of
the material.

The deformations (b-d) shown in figure 2.4 would not be soft when made with clamped boundary
conditions, even without the semi-soft elastic term. This is because no microstructure can be
constructed from the soft deformations that is compatible with the boundary conditions, due to
the shear components in the Sm-C soft mode [65]. However, the properties of a long sheet of Sm-
C LCE may approximate this behaviour as the centre of the sample could deform without rigid
boundary conditions. The final deformation shown in figure 2.4(e) can be performed with clamped
boundary conditions in the soft case. In the semi-soft case the sample starts to shear before the
onset of rotation, which is not compatible with clamped boundaries, so in experiment it may be
even stiffer initially due to this additional constraint on its deformation.

The maximum lateral expansion can be deduced from the soft mode presented in equation 1.10.
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The shear components are transformed, through a rotation, into an elongation. At φ = π/2 the
maximum lateral expansion occurs (in the y direction for the geometry considered here), and has
a value of

√
r/ρ.

There is currently no experimental work reporting mechanical testing on Sm-C monodomains.
Whilst it is anticipated that these monodomains should exhibit soft elasticity, the addition of the
semi-soft elasticity term to the model suggests that any soft effects may be difficult to observe
for large semi-soft parameter α. When stretching perpendicular to both the layer normal and the
director, the semi-soft term may prevent any stress plateau being observed, instead only a shoulder
is visible in the stress-strain response.

Imposed Stress

The region of negative slope in the constitutive models reported here is typically explained by a
Maxwell Construction. Similar behaviour occurs in the Van der Waals gas model which has a
region of negative slope in the pressure-volume curve, where there is a two phase region consisting
of a mixture of the liquid and gas phases. In solids the two deformations on either side of the
instability must be compatible to form a mixture [63]. The system should then disproportionate,
adopting a mixture of the two deformations to achieve the externally imposed strain. The first
order type phase transition seen in the example stretching perpendicular to the layer normal can
result in hysteretic behaviour as the system jumps from one energy well to another. The rate of
the deformation in comparison to the sample relaxation times may also result in hysteresis [81].

The non-monotonic stress-strain curve shown in figure 2.21 is unstable if stress is imposed, as a
spontaneous increase in length occurs once the stress reaches a critical value σc. If the deformations
in the two stable regions are compatible, then the critical stress is determined by an equal area
construction, i.e. A1 = A2.
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Figure 2.21: Nominal Stress versus λxx, for r = 2, and B/µ = 60 and α=0.05, for a stretch at an
angle ψ = 0.65 radians to k0.

This is because the points L and R in figure 2.21 must satisfy,

FL − σcλL = FR − σcλR =⇒ FR − FL = σc(λR − λL).

FR − FL is the area under the stress-strain curve between L and R. The term σc(λR − λL) is
the rectangular area under the stress plateau. For these two terms to be equal the area of the
stress-strain curve above the plateau, A1, must equal the area of the stress-strain curve beneath
the plateau, A2, therefore A1 = A2.

Computationally a fixed stress, σ, can be imposed using the Lagrange multiplier method, i.e.

Minimize
λxx,λxy,λyz ,λxz,λzz,n

FSm−C − σλxx

=⇒ ∂FSm−C
∂λxx

− σ = 0.
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Pseudo-monodomains

Although only the deformations of monodomains have been considered here, the results inform
model predictions for polydomains. Polydomains are difficult to model because of the requirement
of ensuring that adjacent domains deform in a compatible way. A simplifying approximation used
to model a polydomain is to assume that it consists of an array of monodomains that deform at the
imposed external strain, but are independent from each other. If the pseudo-monodomain shown
in figure 1.9 is stretched in the x direction, then the deformation component λyy averaged over all
the domains is illustrated in figure 2.22 for 50 domains.
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Figure 2.22: The average value of λyy for 50 domains in a pseudo-monodomain illustrated in
figure 1.9 as a function of λxx, i.e. stretching perpendicular to n0. All domains are assumed to
experience the same strain and deform independently. Model parameters are (α,B/µ, c, θ0, r) =
(0.05,60,∞,0.5,2).

This figure shows that there is a negative IPR as the director in each of the domains jumps causing
them to expand. The curve illustrated here is jagged because the alignment of each domain jumps
at a slightly different threshold. The expansion of the film thickness, and the energy loss as a
result of the jump in the director orientation in this geometry may be observable in experiments
on pseudo-monodomains [15, 39]. Ren et al. also observed that a pseudo-monodomain stretched
perpendicular to the director underwent necking when the strain exceeded 30% [39]. The larger
values of deformation reported in experiments before the knee in the stress-strain curve point to a
much larger value of α than in the illustrative plot in figure 2.22.

A similar model for a pseudo-monodomain stretched parallel to the director would result in a
stiffness ∼ µ. However in the experiments of Sánchez-Ferrer et al. the observed stiffness is ∼ B
[15]. This might indicate that the domain structure is confining the available shears, resulting in a
much stiffer response.

The features of the smectic-C model described here would be present in a wide range of models that
have soft modes of nematic elastomers but incorporate the constraint on the director to remain at
a fixed angle to the layer normal. However, validation of these models await either experimental
work on mechanical testing of Sm-C monodomains, or theoretical work on pseudo-monodomains
to link up with existing mechanical experiments on pseudo-mododomains.

Biaxial Semi-softness Term

The form of the soft mode results in non-monotonic stress-strain curves for the semi-soft energy
term as well as for generic rubber energies. However biaxial Sm-C systems might have energy
terms of a different form that return the stress-strain curve to monotonicity.

In order to search for these additional terms we can consider the compositional fluctuations model
of a biaxial LCE. Although compositional fluctuations are an unlikely physical explanation of how
semi-softness really occurs the model has been very successful because the energy it predicts is of
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a very general and correct form. The full derivation of the biaxial semi-soft term is included as
Appendix B.

For a biaxial tensor with mean chain anisotropies < r > and < p > the semi-softness term is,

Fss ∼
(
<

1

r
> − 1

< r >

)
< Tr

[
λ · (

(
1 +

< p >

2

)
m0m

T
0 +

(
1− < p >

2

)
k0 k

T
0 ) · λT · nnT

]
>

+

(
<

1

1 + p
2

> − 1

1 + <p>
2

)
< Tr

[
λ · (< r > n0 n

T
0 + 2k0 k

T
0 ) · λT ·mmT

]
>

+

(
<

1

1− p
2

> − 1

1− <p>
2

)
< Tr

[
λ · (< r > n0 n

T
0 + 2m0m

T
0 ) · λT · k kT

]
>, (2.28)

where the initial axes of the biaxial shape tensor are in the n0, m0 and k0 directions.

The factors
(
< 1

r > − 1
<r>

)
,
(
< 1

1+ p
2
> − 1

1+<p>
2

)
and

(
< 1

1− p
2
> − 1

1−<p>
2

)
are positive.

Only the term weighted by
(
< 1

r > − 1
<r>

)
results in a monotonic stress-strain curve.

2.4 Conclusion

This numerical study has investigated the mechanical response of a monodomain Sm-C LCE model,
with the inclusion of a semi-soft elastic term to describe imperfections in the elastomer. As result
of the negative incremental Poisson’s ratio inherent in the soft modes of a Sm-C monodomain,
the mechanical properties of a semi-soft monodomain are unusual. When stretching perpendicular
to the layer normal and the director, the response is reminiscent of a nematic elastomer. The
layer normal does not reorient in this stretch, and a finite force is required to deform the LCE
and initiate director rotation. However, the stress plateau is less well defined for larger values of
semi-soft parameter α; it is reduced to a shoulder in the stress-strain response. This is at variance
to the nematic case where the plateau in the stress-strain response remains, even in the limit of
large α.

When stretching parallel to the layer normal the elastomer again exhibits a threshold to director
rotation. The initial modulus of the stretch is predicted to be the smectic modulus B provided the
tilt modulus → ∞. Once director rotation has started the elastomer has a negative incremental
Poisson’s ratio, and a negative stiffness. The negative stiffness is a consequence of the Sm-C soft
mode deformations and the form of the semi-softness term. The rotation of the director causes
the sample thickness to expand and then contract. A negative incremental Poisson’s ratio of up to
ν ∼ −1.5 has been found for typical model parameters. The lateral expansion arises because the
director rotates in a direction perpendicular to the stretch axis due to the constraint of the layer
normal. This more detailed understanding of monodomain deformations of Sm-C elastomers might
prove useful in understanding recent mechanical and piezoelectric experiments on polydomain Sm-
C elastomers.

When stretching perpendicular to the director with the layer normal coplanar, an instability in the
director orientation is predicted. The director jumps from an unrotated state to a rotated state
at a threshold strain. The semi-soft term provides an energy barrier to director rotation, so the
threshold strain increases with increasing values of the semi-soft parameter. The jump in director
orientation causes a discontinuity in the stress-strain curve, i.e. a dramatic decrease in stress once
the director has rotated. Unfortunately the metastability of the unrotated state in this transition
is not meaningfully predicted by the model, i.e. it is determined to be metastable at any extension.

When stretching parallel to the director the stress-strain response is monotonic and the stiffness
is indicative of the rubber modulus ∼ µ. The layer normal rotates away from the stretch axis,
and the director follows due to the constraint of the tilt angle. Unlike the behaviour observed in
nematic elastomers the director is not predicted to align with the stretch axis at large strains.



Chapter 3

Smectic-A Quasi-Convex Energy

This chapter contains a brief introduction to the concepts of convexity, followed by a discus-
sion of the quasi-convexified form of the Adams-Warner smectic-A energy. The process of quasi-
convexification is elucidated by considering the toy case of a 2D smectic-A material, for which the
laminate microstructure can be calculated explicitly.

An additional energy term is introduced to model the effects of deforming post-buckled smectic-A
layers, finite chain-extensibility and entanglements. The quasi-convexified form of the Adams-
Warner energy combined with this additional term forms the basis of the numerical calculations
in chapter 5. To improve understanding of this model a few uniform deformations are considered,
including stretching parallel and perpendicular to the layer normal.

3.1 Types of Convexity

For an elastic medium any equilibrium configuration corresponds to a stationary point of its free
energy; the equilibrium is stable or metastable at a minimum, and unstable at a maximum. The
general criteria for an elastic medium to always be stable is that its energy is convex. An energy
surface is convex if the entire surface lies above all tangent planes to the surface [82]. In the math-
ematical analysis of microstructure it has proven useful to introduce some alternative conceptions
of convexity. An introduction to these is given here, based on lectures notes by Stefan Müller [83].

Convex Functions

A scalar function is convex if the line segment drawn between two arbitrary points on the energy
surface, A and B, always lies level with or above the energy surface, as illustrated in figure 3.1.

x
A B

W (A)

W (B)

W (x)

Figure 3.1: The solid curve is a convex function W (x). The dotted line shows a line segment
between two points, A and B. For a convex function the line segment always lies level with or
above the energy surface for any choice of A and B.
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The x-coordinate of points between x = A to x = B can be parameterised by λ, where 0 < λ < 1.
The height of the energy surface for a given λ value is W (λA + (1 − λ)B), whereas the height of
the line segment is λW (A) + (1 − λ)W (B). Using these results the definition of convexity can be
restated;

A scalar function W (x) is convex if,

W (λA+ (1− λ)B) ≤ λW (A) + (1− λ)W (B) (3.1)

∀A,B and 0 < λ < 1.

This scalar definition of convexity can be extended to the case of functions depending on matrices.
For the case of a matrix, F , having m× n components, i.e. F ∈ Mm×n, then a function W (F ) is

convex if,

W (λA+ (1− λ)B) ≤ λW (A) + (1− λ)W (B) (3.2)

∀A,B ∈Mm×n and 0 < λ < 1.

Polyconvex Functions

The concept of polyconvexity arises as a generalisation of convexity. A functionW (F ) is polyconvex

if it can be written as a convex function of the minors of F ,

W (F ) =Wconvex(M (F )), (3.3)

where Wconvex is a convex function and the vector M (F ) contains the minors of F as its ele-

ments. Polyconvexity is a weaker condition than convexity; convexity =⇒ polyconvexity, but
polyconvexity 6=⇒ convexity.

Quasi-convex Functions

A function is quasi-convex if spatial variations in F do not result in a more optimally minimized

energy. In elastic solids, where the energy is a function of the deformation gradient F , the con-

dition of quasi-convexity corresponds to stability against microstructure formation, as only affine
deformations are energy minimizers. A material energy W (F ) is quasi-convex if

∫

Ω

W (F )dx ≤
∫

Ω

W (F +∇y(x))dx ∀y,

provided the integral on the right hand side exists. The ∇y(x) term is a spatial gradient included
in the deformation. The displacement y(x) must be sufficiently smooth to have a well-defined first
derivative on region Ω. The overall deformation must still satisfy any boundary conditions specified
on region Ω.

For an energy function that is not quasi-convex it is possible to construct the quasi-convexified
form of the energy by minimising it over all microstructures that respect boundary conditions.
This requires the displacement term, y(x), be zero on the region boundary, ∂Ω. The quasi-convex
envelope of an energy W (F ) is given by

Wqc(F ) = inf
y

{
1

|Ω|

∫

Ω

W (F +∇y(x))dx : y(x) = 0 on ∂Ω

}
. (3.4)

Quasi-convexity is of central importance to microstructure formation, but unfortunately it is very
difficult to determine the quasi-convexity of arbitrary functions. The condition of quasi-convexity
is weaker than that of polyconvexity; polyconvexity =⇒ quasi-convexity, but quasiconvexity 6=⇒
polyconvexity.
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Rank-one Convex Functions

A simple laminate consists of alternating bands of two different deformation gradients, A and B,

as illustrated in figure 3.2.

τ

ν

F = B

F = A

F = B

F = A

Figure 3.2: Illustration of a simple laminate, composed in equal-parts of deformations A and B.

The vectors, ν and τ , are normal and parallel to the laminate interfaces respectively.

In order to maintain the continuity of material along interfaces the deformations must satisfy,

A · τ = B · τ, (3.5)

where τ is a vector parallel to the laminate interfaces. To satisfy this condition the two deformations
must be rank-one connected, and so can be written as,

B −A = a⊗ ν, (3.6)

where ν is a vector normal to the laminate interfaces.

A function is rank-one convex if it is convex along line segments connecting two matrices A and B

that are themselves rank-one connected, i.e. W (F ) is rank-one convex if

W (λA+ (1− λ)B) ≤ λW (A) + (1− λ)W (B) (3.7)

∀A,B ∈Mm×n with rank(B −A) = 1 and 0 < λ < 1.

Rank-one convexity is a weaker condition than quasi-convexity; quasi-convexity =⇒ rank-one convexity.
For a matrix F ∈ Mm×n then it is known that rank-one convexity 6=⇒ quasi-convexity for the

case m ≥ 2 and n ≥ 3 [84].

3.2 Smectic-A Monodomain Model

The Adams-Warner model of smectic-A elastomer has nematic and smectic contributions [23],

Fsmectic-A =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]

︸ ︷︷ ︸
Fnematic

+
1

2
B

(
d

d0
− 1

)2

︸ ︷︷ ︸
Fsmectic

, (3.8)

where µ is the rubber shear modulus, B is the smectic modulus and d
d0

is the change in the layer
spacing. The initial polymer step length tensor, for a polymer anisotropy of r in the n0 direction,
is ℓ0 = δ + (r − 1)n0 n

T
0 . The target state step length tensor is ℓ−1 = δ + (1r − 1)nnT .

The Adams-Warner model takes the layers to deform like embedded planes, which constrains the
layer normal and layer spacing so that,

n =
cof λ · n0

|cof λ · n0|
, (3.9)



CHAPTER 3. SMECTIC-A QUASI-CONVEX ENERGY 53

d

d0
=

1

|cof λ · n0|
, (3.10)

where the deformation gradient, λ, has the smectic-A state as its reference state, and λ is volume

conserving, i.e. det λ = 1.

The Adams-Warner energy can be rewritten using the high-temperature isotropic state as the
reference configuration. The deformations relative to this reference state are given by F ,

F = λ · ℓ01/2r−1/6. (3.11)

The deformation F corresponds to taking the high-temperature isotropic sample, cooling it to

the smectic-A state, and then performing the deformation, λ, in the smectic state. Upon cooling

to the smectic-A state a volume conserving deformation, ℓ0
1/2r−1/6, spontaneously occurs. The

Adams-Warner energy written in terms of F was shown in reference [80] to be,

Fsmectic-A =
1

2
µr1/3


Tr

[
F · FT

]
+ kq2

(
q

|cofF · n0|
− 1

)2

 , (3.12)

where the constants q and k are given by,

q = r−1/3
(
1 +

µ

B
(1− r)

)
(3.13)

k =
B

µr2/3q3
. (3.14)

Experimentally the layers are much stiffer than the rubber, i.e. k ≫ 1, so |cof F · n0| ≈ q should

always hold. The squared term in (3.12) can therefore be expanded around (|cof F ·n0|−q) yielding,

Fsmectic-A =
1

2
µr1/3

(
Tr
[
F · FT

]
+ k(|cof F · n0| − q)2) +O(|cof F · n0| − q)3

)
, (3.15)

Approximating the Adams-Warner energy by keeping only the leading order term, and dividing
through by 1

2µr
1/3 gives the dimensionless energy,

W (F ) = Tr
[
F · FT

]
+ k(|cof F · n0| − q)2. (3.16)

3.3 Smectic-A Quasi-Convexification in 2D

The quasi-convex envelope of an energy is the minimization of the energy over all possible mi-
crostructures, assuming that microstructure become infinitely fine. A simple example of quasi-
convexification can be given for the 2D smectic-A energy. Taking equation (3.16) and setting q = 1
yields the 3D smectic-A energy as

W (F ) =





|F |2 + k(|cof F · n0| − 1)2 if det F = 1

∞ else.

(3.17)

The 2D smectic-A energy can found by restricting F to the form,

F =




0
0

0 0 1


 ,where G =

(
F11 F12

F21 F22

)
. (3.18)

G
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The direction n0 can be taken as e1 without a loss of generality, so the |cof F · n0| term becomes,

|cof F e1| = |F e2 × F e3| = |F e2 × e3| = |Ge2|. (3.19)

The term |F |2 in (3.17) can be expanded out,

|F |2 = |F e1|2 + |F e2|2 + |F e3|2 = |Ge1|2 + |Ge2|2 + 1. (3.20)

Substituting (3.20) and (3.19) into (3.17) and neglecting the constant term yields the 2D smectic-A
energy,

W2D(G) = |Ge1|2 + |Ge2|2 + k(|Ge2| − 1)2. (3.21)

Constructing the Quasi-Convex Envelope of the 2D Smectic-A Energy

It is useful to consider the convexity of the different parts of the 2D smectic-A energy,

W2D(G) = |Ge1|2
︸ ︷︷ ︸
convex

+ |Ge2|2 + k(|Ge2| − 1)2

︸ ︷︷ ︸
ψ(|G e2|), non-convex

, (3.22)

where ψ(|Ge2|) = |Ge2|2 + k(|Ge2| − 1)2.

The term, |Ge1|2, is a convex function. Whereas the term, ψ(|Ge2|), is not a convex function.

The global minimum of ψ(|Ge2|) is k
k+1 , which occurs at deformations satisfying |Ge2| = k

k+1 , as

shown in figure 3.3.
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Figure 3.3: The function, ψ(|Ge2|), and its quasi-convex envelope, ψqc(|Ge2|), are shown for

k = 60. ψ has a minimum located at |Ge2| = k
k+1 with an energy of k

k+1 . The function, ψqc, lies

lower than ψ in the region |Ge2| < k
k+1 where ψqc =

k
k+1 .

If the deformation, G, is taken to be upper-triangular and incompressible, i.e.

G =



G11 G12

0
1

G11


 , (3.23)

then the energy landscape of ψ(|Ge2|) has the double-well form shown in figure 3.4.
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Figure 3.4: The function ψ(|Ge2|) versus G11 and G12, for k = 60. The dotted green line is a

contour line of the global minimum ψ(|Ge2|) = k
k+1 , which corresponds to |Ge2| = k

k+1 .

The region of figure 3.4 enclosed by the dotted green-line corresponds to |Ge2| < k
k+1 . Within

this region the formation of a simple laminate microstructure is energetically favourable. This
microstructure flattens the energy in this region to a constant value of k

k+1 , see figure 3.5.

Figure 3.5: The quasi-convex envelope, ψqc(|Ge2|), versus G11 and G12, for k = 60.

An expression for the quasi-convex envelope ofW2D(G) can be found by minimizing the energy over

a first order laminate microstucture consisting of two oppositely sheared regions. The deformations
in the positively and negatively sheared regions are given by,

G± = G(I + s± e1 ⊗ e2). (3.24)

The deformations, G+ and G−, are rank-one connected as,

G+ −G− = (s+ − s−)(G · e1)⊗ e2, (3.25)

has the same form as equation (3.6), with the normal to the laminate interface being e2.
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The proportion of the microstructure composed of the positively sheared deformation is denoted
α, where 0 < α < 1, and the remaining (1− α) is negatively sheared. The average deformation in
the microstructure must correspond to the imposed macroscopic deformation, which implies that,

αG+ + (1− α)G− = G. (3.26)

The 2D smectic-A energy for the deformation G± is,

W2D(G±) = |G± e1|2 + |G± e2|2 + k(|G± e2| − 1)2. (3.27)

The terms |G± e1| and |G± e2| simplify as follows,

|G± e1| = |G(I + s± e1 ⊗ e2) e1| = |Ge1|, (3.28)

|G± e2| = |G(I + s± e1 ⊗ e2) e2| = |Ge2 + s±Ge1|. (3.29)

Substituting (3.28) and (3.29) into (3.27) yields the energy,

W2D(G±) = |Ge1|2 + |Ge2 + s±Ge1|2 + k(|Ge2 + s±Ge1| − 1)2. (3.30)

The non-convex part of equation (3.30) can be rewritten by substituting t = |Ge2 + s±Ge1|,

ψ(t) = t2 + k(t− 1)2. (3.31)

The value of t is set such that the energy ψ(t) is minimized, which corresponds to

t =
k

k + 1
, (3.32)

or equivalently,

|Ge2 + s±Ge1|2 =

(
k

k + 1

)2

. (3.33)

This is simply a quadratic equation for s+ and s−,

s2± |Ge1|2 + 2s± (Ge1) · (Ge2) + |Ge2|2 =

(
k

k + 1

)2

, (3.34)

with solutions,

s± =
−2Ge1 ·Ge2 ±

√
4(Ge1 ·Ge2)2 − 4|Ge1|2(|Ge2|2 −

(
k
k+1

)2
)

2|Ge1|2
. (3.35)

The expression for the quasi-convex envelope of W2D(G) is,

Wqc(G) =





|Ge1|2 + ψqc(|Ge2|) if det G = 1

∞ else

(3.36)

where ψqc(|Ge2|) =





|Ge2|2 + k(|Ge2| − 1)2 |Ge2| ≥
k

k + 1
Anisotropic Solid

k

k + 1
|Ge2| ≤

k

k + 1
Unidirectional Buckling

(3.37)

The energy has two phases; a phase without microstructure where the material behaves like an
anisotropic solid, and a phase of simple laminates corresponding to unidirectionally buckled layers.
In figure 3.5 the two phases are separated by the dotted green line, with the flat region corresponding
to unidirectional buckling.
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Laminates in 2D

The proportion of positively sheared laminates, α, within the microstructure is found by rearrange-
ment of equation (3.26),

α = − s−
s+ − s−

, (3.38)

where s+ and s− are related to the laminate deformations by G± = G(I + s± e1 ⊗ e2). The

knowledge of G± allows the microstructure to be reconstructed, however the absolute length-scale

of the microstructure is not accessible from this analysis.

The microstructure formed when stretching parallel to the director is illustrated in figure 3.6, where
the uniaxial deformation takes the form,

G =

(
λ 0
0 1/λ

)
. (3.39)

When stretching parallel to the director there is initially a threshold to microstructure formation.
Above the threshold solutions for the shear components s±(λ) appear; these solutions are equal in
magnitude but opposite in sign, so the laminate pairs appear in equal proportions, i.e. α = 1

2 .

Figure 3.6: Laminate microstructure for λ = 1.4 parallel to n0. The shears are s+ = 0.466 and
s− = −0.466, yielding α = 0.5. Hence positively sheared laminates (green) fill the same area as
negatively sheared laminates (red). The empty rectangle shows the undeformed sample size.

When stretching at an angle to the director there is initially a threshold to microstructure formation.
The shear components s±(λ), are in general no longer equal and opposite, so α is a function of
strain. The case of stretching at 20◦ to n0 is illustrated in figure 3.7. Note that the laminate
interfaces rotate with strain, and are not in general along the n0 direction.

Figure 3.7: Laminate microstructure for λ = 1.4 at 20◦ to n0. The shears are s+ = 0.199 and
s− = −0.720, yielding α = 0.783. Hence positively sheared laminates (green) fill greater area than
negatively sheared laminates (red).
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3.4 Smectic-A Quasi-Convex Energy in 3D

Constructing the quasi-convex envelope in three dimensions is a more complicated task, as higher
order laminates are required not just simple laminates. An analytic expression for the quasiconvex
envelope of equation (3.16) was derived by Adams, Conti, DeSimone & Dolzmann in reference [80].
The results of this paper are summarised here.

It is useful to introduce the largest singular value of F denoted by λmax(F ). The singular values

of F are the square-roots of the eigenvalues of FTF , i.e.

λmax(F ) = sup
{
|F · e| : e ∈ R

3, |e| = 1
}
. (3.40)

The expression for Wqc(F ) can be written in terms of two convex functions of F ,

b = λmax(F · P )2, (3.41)

d = |cof F · n0|, (3.42)

where the matrix P = δ − n0n
T
0 projects out the n0 component.

The functions, b and d, have important physical interpretations. For example taking n0 = x and a
deformation of the form,

F =




λ1 0 0
0 λ2 0
0 0 λ3


 , (3.43)

results in d = 1/λ1 and b is the square of the largest of λ2 and λ3, i.e. the deformation component
parallel to n0 is 1/d and the square of the largest deformation perpendicular to n0 is b.

The expression for Wqc(F ) is

Wqc(F ) =





|F · n0|2 + f(b, d) if det F = 1

∞ else

(3.44)

where f(b, d) =





b+
d2

b
+ k(d− q)2 d ≥ kqb

kb+ 1
Anisotropic Solid

b+
kq2

qb+ 1

b ≥ q − 1

k
and

d ≤ kqb

kb+ 1

Unidirectional Buckling

2q − 1

k
b ≤ q − 1

k
Bidirectional Buckling

(3.45)

The energy has three phases; a phase without microstructure (anisotropic solid), a phase of simple
laminates (unidirectionally buckled layers) and a phase of higher order laminates (bidirectionally
buckled layers). The higher order laminates consist of mixtures of multiple simple laminate pairings,
which causes the layers to buckle in more than one direction.

Wqc(F ) is a coarse grained model energy of a smectic-A elastomer that takes into account the for-

mation of microstructure, without resolving the fine-scale oscillations in the deformation gradient.



CHAPTER 3. SMECTIC-A QUASI-CONVEX ENERGY 59

Equilibrium

To compare with experimental results it is convenient to work with deformations relative to the
low temperature equilibrium smectic-A state. The system undergoes a volume conserving uniaxial
deformation as it is cooled from the isotropic state to the smectic state. This uniaxial deformation
along the layer normal minimizes the total free energy Wqc(F ). Taking n0 = x the uniaxial

deformation is,

F 0 =




1/λ20 0 0
0 λ0 0
0 0 λ0


 . (3.46)

Substituting this into equation (3.44) and minimising with respect to λ0 yields the equation,

d

dλ0

[
k(λ20 − q)2 + 2λ20 + λ−4

0

]
= 0. (3.47)

The value of λ0 found by solving (3.47) can be used to convert deformations to start from the
smectic-A state as follows

F = λ · F 0 (3.48)

Here F is a deformation defined with respect to the high-temperature isotropic state, and λ is a

deformation defined with respect to the smectic-A state, see figure 3.8

Isotropic State Smectic-A State Target State

n

F

n0
λF 0

Figure 3.8: The deformation F transforms directly between the isotropic state and the target state.

This is equivalent to performing F 0, which transforms the isotropic state to the smectic-A state,

followed by λ, which is a deformation starting from the smectic-A state.

Substituting this transformation back into the free energy the terms b and d are scaled by λ−2
0 ,

and the term |F · n0|2 is scaled by λ−4
0 . It is useful to define the scaled quantities

b̃ = b/λ20 (3.49)

d̃ = d/λ20 (3.50)

to describe b and d transformed to the smectic-A reference state. The total free energy with respect
to the smectic-A state is

W̃qc(λ) = λ−4
0 |λ · n0|2 + f(λ20b̃, λ

2
0d̃). (3.51)

The phase diagram of the quasiconvex free energy is illustrated in figure 3.9.

The region with d̃ > b̃ is inaccessible due to the incompressibility constraint. In the anisotropic
solid (AS) phase the quasiconvex free energy and the microscopic free energy are the same. The
energy is not lowered by the formation of microstructure, and the layers in the smectic do not
buckle. Hence the small angle X-ray scattering pattern should show just one orientation of the
layer normal. In the unidirectional buckling (UB) phase the energy is minimized by the formation
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Figure 3.9: The phase diagram of the smectic-A LCE quasiconvex energy indicating the anisotropic
solid (AS), unidirectional buckling (UB) and bidirectional buckling (BB) phases. The phase of
the deformation is determined by b̃ and d̃ given in equations (3.49) and (3.50). The smectic-A
equilibrium point is marked by a black circle.

of a simple laminate [80]. There are two deformation gradients λA and λB that are rank one

connected, and whose suitably weighted average produces the macroscopic deformation. The small
angle X-ray scattering pattern should contain two orientations of the layer normal corresponding
to the regions of λA and λB. There should be no reduction in X-ray scattering intensity if the

beam is normal to the plane in which the laminate forms.

In the bidirectional buckling (BB) phase there is no simple laminate that can achieve the optimal
energy. A higher order laminate must be formed [80], which contains an average of several different
deformation gradients. Physically buckling of the smectic layers in more than one direction is
possible, and it is expected that the small angle X-ray scattering pattern will show a loss of
intensity, indicating that some smectic layers are rotated out of the scattering plane.

3.5 Smectic layer buckling, finite extensibility and entanglements

The quasi-convex free energy of equation (3.44) is formulated on the assumption that an infinitely
fine microstructure can be formed at no energy cost. In practice terms involving gradients of the
deformation, arising through the Frank elastic cost of gradients in the director will give rise to an
interfacial energy cost. Deformations perpendicular to the layer normal will distort the buckled
layers changing the interfacial energy.

The Adams-Warner model also makes the assumption of a Gaussian phantom chain network model,
which neglects effects such as the finite extensibility of polymer chains, and chain entanglements.
Several theoretical approaches have been developed to better describe bulk rubber under the in-
fluence of these effects [85, 86].

W̃qc is independent of b̃ and d̃ in the BB phase, which means there is no energy penalty for deforming
the bidirectionally buckled layers in directions perpendicular to n0. Consequently the model does
not reproduce the Poisson’s ratios of (12 ,

1
2 ) that occur post-buckling when stretching parallel to

n0. The Poisson’s ratio of (12 ,
1
2 ) were observed experimentally by Nishikawa et al. [19], and can

be observed in figure 1.11. Motivated by the above theoretical considerations, and to recover the
experimentally observed Poisson’s ratio an additional (convex) term will be included in the model.
This term physical relates to the non-Gaussian nature of the polymer chains, and the deformation
of the buckled layers. The magnitude of this additional term arising from deforming the buckled
layers can be estimated through dimensional analysis.
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Mooney-Rivlin Term

To account for non-Gaussian effects, the deformation of buckled layers, and recover the experi-
mentally observed Poisson’s ratios in a simple way, a Mooney-Rivlin type term will be included in
the energy. This Mooney-Rivlin term is proportional to the second invariant of the Cauchy-Green
strain tensor C = λT · λ [87, 88],

W̃MR(λ) =
1
2cMR(Tr[C]

2 − Tr[C · C]). (3.52)

Note that the Mooney-Rivlin model for bulk rubber is overly simplistic in assuming that the
derivatives of the energy with respect to the first and second invariants (denoted A1 and A2

respectively), ∂W
∂A1

and ∂W
∂A2

, are constants. The model does not realistically describe the uniaxial
or biaxial stretching of even isotropic rubbers [85, 89, 90]. Consequently the values of coefficients
fitted to experiments are likely to be only approximate.

The total free energy is
W̃tot = W̃qc + W̃MR, (3.53)

which is an altogether polyconvex function as both terms are individually polyconvex [91]. It can
be shown by constructing a one-dimensional example that the quasiconvex envelope of the sum
of two functions is not in general equal to the sum of their quasiconvex envelopes. If we were to
add the Mooney-Rivlin term to the nonconvex free energy of equation (3.16) then the quasiconvex

envelope of their sum differs from W̃tot in equation (3.53). The small shift in the energy wells will
not alter the qualitative features of the numerical results here, so we will neglect this change.

The terms W̃MR and W̃qc are both minimal at λ = δ, so the equilibrium point of W̃tot is located

at λ = δ, as desired. The term W̃MR acts to equalise the Poisson’s ratios, which can be seen by

substituting the deformation

λ =




1 0 0
0 λ 0
0 0 1

λ


 (3.54)

into equation (3.52) yielding the following

W̃MR(λ) = 3cMR + 4cMR(λ− 1)2 +O(λ − 1)3. (3.55)

This expression is minimized when the deformations in the two transverse directions are equal.

Note that this additional term affects all the phases, not just the BB phase. However it is not the
dominant free energy term in the AS and UB phases, so does not alter the physics of the model
there.

Estimating the coefficient of the Mooney-Rivlin term

The stiffness associated with changing the buckling wavelength of the layers can be estimated by
using a similar calculation to that of Ref. [56] by Finkelmann et al..

Consider the free energy of a single interface between two regions of opposite shear. Taking n0 = x
then the deformation gradient tensor in the two regions is of the form,

λ =




λxx 0 λxz
0 1

λxxλzz
0

0 0 λzz


 . (3.56)

Using equations (3.9) and (3.10) this deformation results in the following expression for the layer
spacing and director orientation

d

d0
=

λxxλzz√
λ2xx + λ2xz

, (3.57)
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n =

(
λzz√

λ2xx + λ2xz
, 0,− λxz√

λ2xx + λ2xz

)
. (3.58)

The orientation of the layer normal can be written as n = (cos θ, 0, sin θ), where tan θ = −λxz/λzz .
Substituting these expressions into the Adams-Warner energy of equation (3.8) gives

f = 1
2µ

[
λ2zz +

1

λ2zzλ
2
xx

+ λ2zz tan
2 θ + (cos2 θ + r sin2 θ)λ2xx +

B

µ
(λxx cos θ − 1)2

]
. (3.59)

This equation can be minimized over λ2zz , resulting in λ2zz = cos θ/λxx. Substituting this back into
the free energy reduces it to

f = 1
2µ

[
2

λxx cos θ
+ λ2xx(cos

2 θ + r sin2 θ) +
B

µ
(λxx cos θ − 1)2

]
. (3.60)

Expanding for small θ up to quartic order, corresponding to small rotations of the layer normal,
produces the following expression

f = 1
2µ
[
p0 − p2θ

2 + 1
3p4θ

4
]

(3.61)

p0 =
2

λxx
+ λ2xx +

B

µ
(λxx − 1)2 (3.62)

p2 = − 1

λxx
+ λ2xx(r − 1) +

B

µ
(λ2xx − λxx) (3.63)

p4 =
1

4

B

µ
λxx(4λxx − 1) +

5

4λxx
+ (1− r)λ2xx. (3.64)

In addition to the rubber elastic energy, calculation of the interface energy requires a Frank elastic
energy. For simplicity the one constant approximation can be made, i.e. splay, twist and bend are
penalized by the same constant. For the sample shown in figure 3.10 of size Lx×Ly×Lz, the total
free energy is

F = LxLy

∫ Lz

0

dz
(
1
2µ
[
p0 − p2θ

2 + 1
3p4θ

4
]
+ 1

2Kθ
′2) . (3.65)

It is convenient to convert distance to a dimensionless quantity using ξ =
√

K
µ and to denote

t = z/ξ. The free energy becomes

F = LxLy

√
K

µ

∫ L

0

dt
(

1
2µ
[
p0 − p2θ

2 + 1
3p4θ

4
]
+ 1

2 θ̇
2
)
, (3.66)

where Lz = Lξ. Minimizing this integral produces the following Euler-Lagrange equation

θ̈ = −p2θ + 2
3p4θ

3. (3.67)

Far away from the interface the director is in the energy minimum where

θ2 = θ20 =
3p2
2p4

. (3.68)

The first integral of the Euler-Lagrange equation is given by

1
2 θ̇

2 = − 1
2p2θ

2 + 1
6p4θ

4 + 1
2p2θ

2
0 − 1

6p4θ
4
0 . (3.69)

The first integral can be used to substitute for the θ̇ term in the free energy. Subtracting from F
the free energy of the uniform state with θ = θ0 gives the free energy of the interface,

Fint = LxLy
√
Kµ

∫ L

0

dt
[
−p2(θ2 − θ20) +

1
3p4(θ

4 − θ40)
]
,
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=
√
2Kµ

p
3/2
2

p4
LxLy. (3.70)

The wavelength of the layer buckling, and hence the stiffness of the buckled layers can be estimated
as follows. The sample can be divided into three regions, as shown in figure 3.10.

(1− 2h)Lx

hLx hLx

Figure 3.10: To estimate the length scale of the layer buckling it is assumed that the sample divides
into three regions as shown. The end regions do not contain buckled layers, whereas the central
region does.

The end regions near the clamps are too constrained to buckle, so contain layers with a fixed layer
normal (θ = 0), and hence have free energy density

FU = Fθ=0 =
µ

2
p0(λ1), (3.71)

where λ1 is the zz component of the deformation in this region. The central region contains smectic
layers with tilt angle θ0, so has free energy density

FR = Fθ=θ0 =
µ

2

(
p0(λ2)−

3

8

p2(λ2)
2

p4(λ2)

)
, (3.72)

where λ2 is the xx component of the deformation in this region. If the end regions are of order hLx
which in turn is comparable to the wavelength of the layer buckling, then the number of interfaces
in the bulk is Lz

hLx
. Since the elongation of the sample is performed by imposing a stress σ, that

does work in extending the sample, the total free energy of the system is

FT = (1 − 2h)
µ

2

(
p0(λ2)−

3

8

p2(λ2)
2

p4(λ2)

)
V + hµp0(λ1)V (3.73)

− σ (2hλ1 + (1 − 2h)λ2)V + Fint
Lz
hLx

,

where V = LxLyLZ is the volume of the sample.

Minimising FT over h yields the following optimal value,

h∗2 = Fint
Lz
LxV

× 1

3
4
µ
2

p22(λ2)

p4(λ2)
+ σ(λ2 − λ1) + µ(p0(λ1)− p0(λ2))

. (3.74)

To estimate the stiffness corresponding to changing the buckling wavelength it is useful to denote
h = γh∗. Substituting this into equation (3.73) and taking the second derivative with respect to γ
yields the stiffness of the sample associated with changing the buckling wavelength,

Y =
1

2

∂2FT
∂γ2

∣∣∣∣
γ=1

=
Fint

V h∗Lx
. (3.75)

Assuming that B ≫ µ so that λ1 ≈ 1, simplifies the result to,

Y ≈ B

√√
K

B

1

Lx
f(λ), (3.76)
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where f(λ) is a function of the deformation applied.

As expected the buckled layer modulus goes to zero when K = 0.

The stiffness given in equation (3.76) provides an estimate of the magnitude of cMR. It must be
divided by 1

2µr
1/3 to render it in the same dimensionless units as the smectic-A energy, i.e.

cMR ∼ 2B

µr1/3

√√
K

B

1

Lx
. (3.77)

Alternative Terms

Many possible energy terms, which act to equalise the Poisson’s ratio, were considered before
arriving at the Mooney-Rivlin term. The additional term should not change the equilibrium point
of the model, which rules out simply adding a small multiple of b̃. Also the additional term should
only be significant within the BB phase, which rules out terms involving higher powers of b̃ .

It is often helpful, when a system has a single anisotropy direction n0, to write the energies in
terms of the invariants of the Cauchy-Green strain tensor C = λT · λ,

A1 = Tr[C] (3.78)

A2 = 1
2 (Tr[C]2 − Tr[C · C]) (3.79)

A3 = det[C] (3.80)

A4 = n0 · C · n0 (3.81)

A5 = n0 · C · C · n0. (3.82)

The parameters, b̃ and d̃, can also be rewritten in terms of the invariants. This is done by putting
a general form of C into the definitions of the b̃, d̃ and the invariants; substitution then yields,

b̃ =
A1 −A4 +

√
(A1 +A4)2 − 4(A2 +A5)

2
(3.83)

d̃ =
√
A2 +A5 −A1A4. (3.84)

The term, (A1 + A4)
2 − 4(A2 + A5), which is contained within the square root term of b̃, acts to

penalise unequal Poisson’s ratios, and may seem a good choice for the additional term. However it
does not satisfy the requirement of being polyconvex given the constraint of incompressibility. It
is quite difficult to find functions that satisfy this condition, as polyconvex terms can become non-
convex when restricted to incompressible deformations, e.g. A4 + 2b̃ is polyconvex, but graphical
plotting shows that it is no longer polyconvex under the constraint of incompressibility.

A function can be proven to be polyconvex by evaluating the second derivatives of the function,
and showing that the function always has a positive curvature [91]. This can be performed for the
Mooney-Rivlin term by writing it as a function of principal elongations,

W̃MR = 1
2cMR(λ1λ2 + λ1λ3 + λ2λ3). (3.85)

The incompressibility constraint can be expressed as,

λ1λ2λ3 = 1. (3.86)

Substituting the constraint into the Mooney-Rivlin term gives,

W̃MR = 1
2cMR(

1

λ3
+

1

λ2
+ λ2λ3). (3.87)
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The second derivatives of the Mooney-Rivlin term are,

∂2W̃MR

∂λ22
=
cMR

λ32
,

∂2W̃MR

∂λ23
=
cMR

λ33
,

∂2W̃MR

∂λ2∂λ3
= 1

2cMR, (3.88)

which are all positive provided that cMR, λ2, λ3 > 0.

3.6 Uniform Deformations of the Smectic-A model

In order to increase understanding of the energy W̃tot it is useful to consider a few uniform de-
formations. Throughout this section the layer normal is taken to be initially aligned with the x
direction, i.e. n0 = x.

Elongation parallel to the layer normal

An elongation parallel to the layer normal is described by

λ‖ =



λ 0 0
0 1

λγ 0
0 0 1

λ1−γ


 , (3.89)

where the parameter γ determines the Poisson’s ratio of the deformation. A value of γ = 1
2 gives

isotropic behaviour in the directions perpendicular to the n0. A value of γ = 1 gives the anisotropic
Poisson’s ratios of (1, 0).

0.7

0.8

0.9

1

1.1

0.7 0.8 0.9 1 1.1 1.2 1.3

b̃

d̃
λ‖,1

λ2

λ‖,1/2

λ⊥

Figure 3.11: Paths traversed in b̃ and d̃ on stretching parallel to n0 with γ = 1
2 (short dashed-line)

and γ = 1 (long dashed-line). The deformations λ⊥ (solid-line) and λ2 (dotted-line) are both

stretching perpendicular to n0, with the latter performed after an initial parallel stretch.

Figure 3.11 shows that when stretching parallel to n0 with γ = 1
2 (labelled λ‖,1/2) the elastomer

deformation follows the line b̃ = d̃. The system crosses from the AS to BB phase at the threshold
strain,

λth = λ20(q − 1/k)−1. (3.90)

By contrast when stretching parallel to n0 with γ = 1 (labelled λ‖,1 in figure 3.11) the deformation

follows the line of constant b̃ . The system crosses from AS to UB phase, at λ = (1 + kλ20)/kq.

The nominal stress denoted σN , and measured in units of 1
2µr

1/3 can be calculated by differentiating

the scaled free energy W̃tot with respect to λ. The nominal stress shows a dramatic reduction
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when the elastomer crosses into the microstructured phases BB or UB. For example on the γ = 1
2

trajectory the elastic modulus when the deformation begins is

k
λ40
λth

+
4

λ40
+ 6cMR. (3.91)

This is dominated by the smectic layer modulus encoded in k ≫ 1. After the threshold at λth the
modulus drops to

2

λ40
+

6

λ4th
cMR, (3.92)

i.e. it is reduced by a factor of approximately k, as illustrated in figure 3.12.
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Figure 3.12: The nominal stress σN as a function of deformation λ for deformations parallel to n0
with γ = 1

2 , and perpendicular to n0.

Elongation perpendicular to the layer normal

An elongation perpendicular to the layer normal, n0, with Poisson’s ratios of (1, 0), is described by

λ⊥ =



1 0 0
0 λ 0
0 0 1

λ


 . (3.93)

The trajectory of this deformation is along a line of constant d̃, as shown in figure 3.11 (labelled
λ⊥). The elastic modulus in this case is,

8λ20 + 8cMR. (3.94)

The nominal stress σN for this geometry is illustrated in figure 3.12. There is no threshold in
stress-strain curve, and no microstructure forms in this deformation geometry.

Two step deformation

A two stage deformation process first stretching parallel to the director by a factor of λ1, and
then perpendicular to it by a factor λ2, defined in equation (3.95), can be used to experimentally
determine the constant cMR.

λ2 =



1 0 0
0 λ2 0
0 0 1

λ2


 .



λ1 0 0
0 1√

λ1
0

0 0 1√
λ1


 , (3.95)
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The trajectory of this deformation is illustrated in figure 3.11. The first stage follows λ‖,1/2, and

the second stage is labelled λ2. The first stage of deformation proceeds the system moves along

the line b̃ = d̃, thus crossing from the AS to BB phase. During the second deformation stage the
system moves along a line of constant d̃, crossing from the BB to UB phase. The nominal stress
during the second stage is shown in figure 3.13. If cMR is zero then the deformation is perfectly
soft within the BB phase. This is an intrinsic property of W̃qc which is altered by the addition

of W̃MR. Physically this reflects the fact that there is an energetic cost to deform buckled layers,
which rules out perfectly soft deformation.
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Figure 3.13: Nominal stress as a function of deformation λ2 during the two stage deformation. The
first stage is a deformation parallel to n0 of λ1 = 1.4, followed by the perpendicular elongation λ2.

At the start of the λ2 deformation the elastic modulus is given by,

8cMRλ1, (3.96)

i.e. it is entirely due to the additional Mooney-Rivlin type term, so can be used to experimentally
measure this additional constant. Once the trajectory of the deformation enters the UB phase the
stiffness increases to

8q + 8/(qk2)− 16/k + 8cMRλ1. (3.97)

Elongation at an angle to the layer normal

Elongation of the elastomer at an angle θ to the layer normal can be represented by the deformation

λθ =



λ 0 0
0 1√

λ
0

0 0 1√
λ


 ·



cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 . (3.98)

Two trajectories for this type of deformation are shown on the phase diagram in figure 3.14 for
θ = 0.3 and 0.4 radians.

Elongation at an angle to the layer normal results in a rapid rotation of the layer normal away
from the stretch axis. The lowest free energy of the system for larger rotation angles is in the UB
phase, as illustrated by the trajectory of the deformation.
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Figure 3.14: The trajectories on the phase diagram for elongations at an angle of θ = 0.3 radians
(solid line) and θ = 0.4 radians (dashed line) to n0. The maximum deformation shown in each case
corresponds to λ = 2.5.

3.7 Summary

In this chapter we introduced the concept of quasi-convexity. A function is quasi-convex if spatial
variations in the deformation do not result in a more optimally minimized energy. The quasi-
convex envelope of an energy can be found by minimizing it over all possible microstructures,
assuming that the microstructure can form infinitely finely. An example of this process was given
for the simple case of a 2D smectic-A energy, where the laminate microstructure can be calculated
explicitly.

The quasi-convexified form of the Adams-Warner smectic-A energy was derived by Adams, Conti,
DeSimone & Dolzmann in reference [80]. This energy is divided into three phases. In the phase
where no microstructure forms the layers are unbuckled, and the material behaves like an asym-
metric solid (AS). In the phase with simple laminate microstructure the layers are unidirectionally
buckled (UB), and in the phase with higher order microstructure the layers are bidirectionally
buckled (BB).

When stretching parallel to n0 the experimentally observed Poisson’s ratios post-buckling are (12 ,
1
2 ).

Unfortunately the quasi-convexified energy has no energy penalty for deforming bidirectionally
buckled layers in directions perpendicular to n0, so the model fails to reproduce the experimental
Poisson’s ratio. An additional energy term is required to model the deformation of post-buckled
smectic-A layers, as well as the non-Gaussian nature of polymer chains. Hence a Mooney-Rivlin
type term is included in the model. This term is added to all regions of the energy, but only
significantly influences behaviour within the BB region. A Mooney-Rivlin term added to the
quasi-convexified form of the Adams-Warner energy is an altogether polyconvex function, which is
used as a finite element material model in chapter 5.



Chapter 4

Review of Finite Element Models of LCE

This chapter contains a short introduction to the methodology of finite element modelling, and
its mathematical foundations. A one dimensional example of finite element analysis is given, and
its generalisation to the three dimensional case is described. There is then a literature review of
previous finite element work studying soft and semi-soft nematic elastomers. A numerical study of
smectic-A elastomer is undertaken in chapter 5.

4.1 Introduction to the Finite Element Method

The finite element method is a numerical method for finding approximate solutions to system of
differential equations with specified boundary conditions. The method subdivides the continuous
geometries of complex objects into a discrete mesh. The method has gained widespread engineering
usage, with applications to fields such as structural mechanics, heat flow, electrostatics and fluid
mechanics.

The static deformation of an elastic solid can be solved using finite element analysis. Typically a
set of steps are performed;

• A computer model of the solid geometry is created, then subdivided into a mesh of elements.

• Boundary conditions are specified as displacement constraints on nodes or surfaces.

• A constitutive equation for the material stress-strain behaviour is specified.

• A scheme to control the size of intermediate steps must be chosen.

• When the job is run a numerical solver finds solutions to a system of force balance equations.

The final solution corresponds to force equilibrium existing at every node (within a specified tol-
erance).

Mathematical Foundation of the Finite Element Method

We now give a 1D example of the finite element method in solving a second-order differential
equations of the form

− d

dx

(
p(x)

du(x)

dx

)
+ r(x)u(x) = f(x), (4.1)

where the variable x parameterises the position in one-dimensional space [92]. The domain of the
problem is restricted to the region a < x < b. The physical interpretation of u(x) is dependent on
the nature of problem. In the case of heat conduction u(x) represents temperature and in the case
of elasticity it represents displacement. Boundary conditions are typically enforced at the ends of
a finite element domain, e.g. u(a) = A and u(b) = B. Physically such conditions might correspond
to an imposed displacement or temperature.

69



CHAPTER 4. REVIEW OF FINITE ELEMENT MODELS OF LCE 70

A boundary condition of the form u(a) = A is termed a Dirichlet condition. A condition on the
first derivative is termed a Neumann condition, e.g. an imposed heat flow du

dx |x=a = A. Commonly
a mixture of these boundary conditions apply in finite element problems.

An elastic cylinder deformed axisymmetrically can be modelled as problem of 1D elasticity. If the
cylinder has cross-sectional area A(x) and is subject to an external axial force per unit length f(x),
then balance of forces gives

d

dx
(σ(x)A(x)) = f(x). (4.2)

The constitutive relation for a Hookean elastic material takes the form σ(x) = Eǫ(x), where σ(x) is
stress, ǫ(x) is strain and E is the modulus. The strain can be written as the gradient of displacement
ǫ = du

dx , which yields a second order equation

E
d

dx

(
du(x)

dx
A(x)

)
= f(x). (4.3)

The domain is then divided up into a finite number of elements, see figure 4.1. Only displacements
at the nodes are recorded, and interpolation is used to approximate displacements of points be-
tween nodes. A 1D element with two nodes per element uses linear interpolation, and a quadratic
interpolation scheme would require three nodes per element.

Element Number:

Node

1 2 3 4 5 6 7 8

Figure 4.1: A finite element domain sub-divided into 8 linear elements with 9 nodes.

On each element a piecewise polynomial function is defined to approximate the true displacement
solution, as shown in figure 4.2. Each piecewise region starts and ends at a node.
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Figure 4.2: Linear basis functions are shown approximating the true solution (dotted-line). Basis
functions must always satisfy the boundary conditions.

Two ways to construct approximate solutions exist (i) the Rayleigh-Ritz method and (ii) the
Galerkin method. In most cases the approximate solutions found using these methods can be
made arbitrarily close to the true solution, by making the finite element mesh increasingly fine.

It is possible to find the true displacement solution, u(x), by starting with a trial function utrial(x)
that it defined such that it always satisfies the boundary conditions. Then the fitness of the trial
function is improved by tuning its free parameters. The Rayleigh-Ritz method requires that second
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order differential equation can be restated in the following quadratic variational form

J (utrial(x)) =

∫ b

a

1

2

(
p(x)

(
dutrial(x)

dx

)2

+ r(x)utrial(x)2

)
− f(x)utrial(x) dx. (4.4)

The Rayleigh-Ritz principle states that the true solution u(x) is the function that successfully
minimizes the functional J ( · ). The Rayleigh-Ritz method is to obtain an approximation to the
true solution by finding the trial function that minimizes the functional J (utrial(x)).

If the second order differential equation includes a first order term, i.e. du
dx , then it may not be

possible rewrite it in the required variational form. For this reason the Galerkin method has a
broader applicability than the Rayleigh-Ritz method.

The Galerkin principle states that the true solution u(x) satisfies the weak formulation of the
problem, i.e.

∫ b

a

p(x)
du(x)

dx

dv(x)

dx
+ r(x)u(x)v(x) dx =

∫ b

a

f(x)v(x) dx ∀v(x) satisfying the BCs
v(a) = 0 & v(b) = 0

(4.5)

where the function v(x) is any function that is continuous over the domain a < x < b and satisfies
v(a) = 0 and v(b) = 0. The functions v(x) and u(x) are both required to have well-defined first
derivatives. The Galerkin method to obtain an approximation to the true solution is to replace
u(x) in equation (4.5) with a discretised function uG(x). The discrete function uG(x) is a weighted
sum of the Galerkin basis functions ψi,

uG(x) = ψ0 +

n−1∑

j=1

ujψj , (4.6)

and the correct choice of the uj will successfully approximate the true solution. The lowest Galerkin
basis function ψ0 is a linear interpolation between the boundary conditions u(a) = A and u(b) = B.
The higher ψj are commonly chosen to be linear splines defined piecewise over the elements, as
shown in figure 4.3. For a domain subdivided into n elements there are (n − 1) linear splines
functions.
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Figure 4.3: The lowest Galerkin basis function ψ0 interpolates between the boundary conditions.
The basis function ψ2 is only non-zero on elements 2 and 3.

The Galerkin principle of equation (4.5) can be written more succinctly as,

A(u(x), v(x)) = 〈f(x), v(x)〉 ∀v(x) satisfying BCs, (4.7)

where A( · , · ) is a functional form and 〈f(x), v(x)〉 denotes the inner product of f(x) and v(x)
over the domain a < x < b.
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Any choice of the function v(x) can be made provided the boundary conditions are satisfied, i.e.
v(a) = 0 and v(b) = 0. Thus the arbitrary function v(x) can be approximated by a weighted sum
of the higher Galerkin basis functions

v(x) ≈
n−1∑

i=1

βiψi. (4.8)

Thus following the Galerkin method and discretising equation (4.7) gives,

A(uG(x),

n−1∑

i=1

βiψi) = 〈f(x),
n−1∑

i=1

βiψi〉 , (4.9)

which as the βi are arbitrary is equivalent to the following set of (n− 1) equations

A(uG(x), ψi) = 〈f(x), ψi〉 for 1 < i < n− 1. (4.10)

Writing out the discrete function uG(x) in terms of its expansion yields

A(ψ0 +

n−1∑

j=1

ujψj , ψi) = 〈f(x), ψi〉 for 1 < i < n− 1. (4.11)

Using the property that A( · , · ) is a bilinear function gives

n−1∑

j=1

A(ψj , ψi)uj = 〈f(x), ψi〉 − A(ψ0, ψi) for 1 < i < n− 1, (4.12)

or equivalently in matrix form

n−1∑

j=1

−Kijuj = fi for 1 < i < n− 1, (4.13)

where Kij = −A(ψj , ψi) and fi = 〈f(x), ψi〉 − A(ψ0, ψi). The components of the matrix Kij and
the vector fi can be computed by evaluating the integrals using numerical integration. The system
of equations can then be solved using matrix methods to yield the coefficients uj , which describe
the approximate solution.

Generalisation to Three Dimensions

In three dimensional problems the solution to a set of differential equations is sought over a volume
domain Ω, and the boundary conditions are specified on the surface of the volume ∂Ω. Provided
the differential equations are linear the system of equations can be represented as,

Lu(x, y, z) + b = 0 on Ω, (4.14)

Mu(x, y, z) + t = 0 on ∂Ω, (4.15)

where u(x, y, z) is a scalar or vector representing the function sought, e.g. temperature or displace-
ment [93].

The next step of finite element analysis is to subdivide the three dimensional volume domain into
a mesh of elements. The most commonly used elements in three dimensions are tetrahedral or
brick shaped, see figure 4.4. Elements using linear interpolation only have nodes situated at their
corners, whereas a higher order element has additional nodes located along its edges.

Once a mesh is defined then the function u(x, y, z) can be approximated by an expansion in terms
of the corresponding basis functions, i.e.

u(x, y, z) ≈ ψ0 +

n−1∑

j=1

ujψj . (4.16)
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Figure 4.4: (left) A 4-node linear tetrahedral element. (middle) An 8-node linear brick element.
(right) A 20-node quadratic brick element.

Following the Galerkin method then yields a system of equations which have the same form as the
one dimensional case, i.e.

Kijuj + fi = 0, (4.17)

In order to obtain the coefficients of the matrix Kij it is necessary to use numerical integration to
compute an integral over the volume of each element. Typically the Gaussian quadrature method
is used, which approximates an integral of a function as a weighted sum of the function values at
n points in the integral domain. If the function being integrated is a polynomial of order 2n − 1
then the method computes the integral exactly [94]. The material response is calculated at the
integration points of the Gaussian quadrature method; the displacements and stresses are then
extrapolated from the integration points out to the element nodes.

Elements can be formulated to either use full-integration or reduced-integration. A fully-integrated
element has enough integration points to compute its integrals exactly, provided that the element
is in a regular configuration, which for a linear brick element means the sides must be parallel
and meet at 90◦. For a linear element to be fully-integrated two integration points are required
for each dimension of the element, so a three dimensional brick element has eight integration
points, see figure 4.5. A reduced-integration element typically only has one integration point,
which has the advantage that it reduces the number of equations to be solved and therefore speeds
up computation. However this speed-up comes at the cost of the reduced accuracy of the achieved
solution. Reduced-integration linear elements can suffer from the anomalous deformation mode
known as hourglassing, where rectangular elements deform into an hourglass shape at zero energy
cost [95]. This deformation is non-physical, and should be prevented by adding artificial stiffness.

Figure 4.5: (left) A reduced-integration 8-node linear brick element has a single central integration
point (marked in red). (right) A fully-integrated 8-node linear brick element has eight integration
points located throughout its volume.

Different element types have different strengths and weaknesses; the choice of element should re-
flect the nature of the problem at hand. Incompressible and near-incompressible materials tend to
cause problems with elements based solely on the standard displacement description of elasticity
[93]. Fully incompressible materials require an element with a hybrid formulation, where an addi-
tional hydrostatic pressure term is introduced to enforce incompressibility. Nearly incompressible
materials can be modelled by reduced-integration elements without using a hybrid formulation.
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Quadratic elements are superior to linear elements at describing stress concentrations, provided that
severe distortions do not occur [96]. They are also better suited to modelling complex geometries,
such as curved surfaces, and bending deformations. A fully-integrated linear brick element can
not accurately represent a bending deformation, which causes an excessive stiffness in bending
termed shear-locking. However quadratic elements can suffer from an excessive stiffness termed
mesh locking when deformed incompressibly, which linear elements are immune from.

Accurate results can only be achieved if the finite element domain is meshed sufficiently finely.
To demonstrate that results are accurate the simulation should be repeated using finer and finer
meshes, until the results are seen to converge. Finer meshes increase the computation time, but
overly coarse meshes will produce inaccurate results. The choice of element type affects the rate
of mesh convergence, for example linear tetrahedral elements converge slowly towards the true
solution and are therefore best avoided.

Finite element analysis can be performed either statically or dynamically. In static analysis the
path between the initial and final state of the system is parameterised by dividing it into many
increments. For example in a solid mechanics problem the applied deformation is increased at
each increment, until at the final increment the full deformation is achieved. At the beginning
of each increment the stiffness matrix, Kij , from equation (4.17) is computed. The solution is
then found by applying Newton’s method (or a similar procedure) to solve the matrix equations to
within a specified tolerance. The solution from one increment is used as the initial estimate of the
solution at the next increment. If the estimate lies within the radius of convergence to the solution
then Newton’s method will successfully find the solution. Decreasing the increment size tends to
improve convergence, however in problems with material or geometric instabilities convergence is
not guaranteed.

In dynamic analysis the progress of the solution is parameterised by a time variable. The deforma-
tion is computed by advancing from one time increment to the next using the laws of motion. The
equilibrium configuration at each time increment is not sought and the stiffness matrix is never
computed. In the limit of sufficiently slow kinematics the dynamic solution will correspond to the
static case. Dynamic analysis is commonly used to compute wave solutions and in situations where
a static analysis does not converge.

The finite element method has been used to model the deformation of LCE in realistic stretching
geometries; predicting the spatial distribution of microstructure as well as stress-strain curves. The
next section is a review of the literature of LCE modelling using the finite element method.

4.2 Finite Element Models of Nematic LCE

The elastic energetic cost of deforming a nematic elastomer was proposed by Bladon, Terentjev
and Warner [52] to take the form;

Fnematic =
1

2
µTr

[
λ · ℓ0 · λT · ℓ−1

]
. (4.18)

This energy permits perfectly soft deformations via rotations of the director. Also the energy is
not convex, which motivates the formation of microstructure as a means of lowering the energy.
This is consistent with the experimental observation of an induced stripe microstructure in nematic
elastomers, as shown in figure 4.6(a).

In the stripe pattern the director is rotated oppositely in neighbouring stripes. The rotation is
caused by the simple shear present in each stripe, which is either positive or negative and alternates
between stripes. Stripe formation can occur locally even when the stretching geometry prohibits
the global shearing of the sample. In reality striped deformations are not perfectly soft, and to
account for this theoretical models may include a semi-softness term, which penalizes director
rotation.

When a nematic elastomer is stretched perpendicular to its initial director a striped texture forms
in the bulk of the sample, see the middle frame of figure 4.7. In the immediate vicinity of the clamps
the shears necessary to form a stripe are restricted by the clamping conditions. This causes a thin
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(b)(a)

Figure 4.6: (a) Stripe domain texture observed using polarizing microscopy by Kundler and Finkel-
mann [54]. The characteristic width of domains is ∼ 15µm. (b) Geometry of stretching.

region without microstructure to occur near the clamped edges, as illustrated in figure 4.6(b). The
width of these regions is of order the characteristic microstructure size, so they are difficult to
observe without magnification.

Figure 4.7: The spatial distribution of microstructure in a monodomain nematic elastomer,
stretched perpendicular to the initial director, as seen by direct observation. (top) The unde-
formed state, λ = 1. (middle) A strain of λ ≈ 1.2 exceeds the strain threshold to director rotation.
(bottom) A strain of λ ≈ 1.4 exceeds the strain required to fully rotate the director [60].

At large strains the stripe texture disappears from the bulk of the sample, as seen in the bottom
frame of figure 4.7. The stripe texture clears once the directors in the stripes become fully aligned
with the stretch axis. However a complicated pattern of microstructure still persists near the
clamped edges. The shape of the deformed sample near the clamps is intrinsically related to the
distribution of microstructure in this region. An experimental study by Zubarev et al. demonstrates
that the spatial distributions of microstructure is dependent on the length to width aspect ratio of
the sample [78]. The higher the aspect ratio the less impact the clamping conditions have on the
bulk of the sample. This means that with all other parameters equal a higher aspect ratio sample
will be slighter softer than a low aspect ratio sample.

In the literature quasi-convexified nematic energies have been used to construct finite element ma-
terial models of soft and semi-soft nematic elastomers. These models allow the spatial distribution
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of microstructure to be studied in realistic stretching geometries, i.e. with clamped edges. The
models are static models, as they contain no dynamic terms. Models based on quasi-convex energies
are coarse-grained, as they do not resolve the fine scale of the microstructure. For a simulation to
resolve the microstructure the energy model would require a term that penalizes spatial gradients
in the director, and the finite element mesh would need to be at an extremely fine scale.

Soft Nematic Quasi-Convex Energy

The nematic free energy can be rewritten with the isotropic state as the reference configuration
rather than the nematic phase,

W (F ) =

{
λ21 + λ22 + aλ23 − 3a1/3 if detF = 1

+∞ else
(4.19)

where λ1(F ) ≤ λ2(F ) ≤ λ3(F ) are the ordered singular values of deformation gradient, F , and

the multiplicative factor of µ has been neglected. The parameter a characterises the extent of
the uniaxial deformation that occurs on transition from the isotropic to the nematic state, this
deformation has the same form as equation (3.46) with λ0 = a1/6, and in terms of the polymer
anisotropy λ0 = r−1/6.

The quasi-convex envelope of the nematic energy was derived by DeSimone and Dolzmann (2002)
[97] to be,

Wqc(F ) =





0 if λ1 > a1/6

W (F ) if a1/2λ23λ1 > 1

λ21 + 2a1/2λ−1
1 − 3a1/3 else

(4.20)

where the deformation gradient is volume conserving, i.e. detF = 1.

Conti, DeSimone, Dolzmann (2002) used Wqc plus a neo-Hookean perturbation as the finite ele-
ment material model [68]. The perturbation term is necessary because multiple possible deforma-
tion states exist when Wqc = 0. A small perturbation term splits the degeneracy, and was shown
quantitatively to not change the results. Because the perturbation term is small it is not necessary
to consider its effects on the quasi-convex envelope. The model allows the study of loading experi-
ments in realistic geometries, i.e. with clamped boundaries. Numerical simulations were performed
on a quarter-sample using a non-uniform 2D mesh of 800 elements and a reverse loading path.

The quasi-convexified energy predicts three phases (i) liquid-like microstructure (ii) smectic-like
microstructure (iii) no microstructure. Liquid-like microstructure deforms perfectly softly, i.e. at
no energy cost. Smectic-like microstructure is soft when sheared in-plane but solid when stretched
in-plane. The phase with no microstructure is not soft, i.e. it is a rubbery solid.

The predicted distribution of microstructure when stretching perpendicular to the initial director
is shown in figure 4.8. At a stretch of 1.46 the bulk of the sample forms no microstructure, as the
director has fully re-oriented to become parallel to the stretch axis. In the central region of the
clamps a small region of microstructure exists, which is smectic-like and therefore transmits stress.
This microstructure exists at the clamp because no contraction in the width direction is possible,
so the deformation is largest in the thickness direction, which can be accommodated by a smectic
microstructure.

Semisoft Nematic Quasi-Convex Energy

The model of Verwey, Terentjev and Warner [55] introduces an additional semisoftness term to
describe non-ideal nematic elastomers,

FV TW =
1

2
µTr[λ · ℓ0 · λT · ℓ−1]
︸ ︷︷ ︸

Fnematic

+
1

2
µssTr[λ · (δ − n0n

T
0 ) · λT · nnT ]

︸ ︷︷ ︸
Fsemisoft

. (4.21)
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Figure 4.8: Spatial microstructure distribution at a stretch of 1.46 perpendicular to the initial
director. Darkly shaded regions correspond to the absence of microstructure, whereas lightly
shaded regions correspond to liquid or smectic-like microstructure. The enlarged pictures show
possible constructions of the microstructure, with director orientations shown by short lines.

Conti et al. (2002) transformed equation (4.21) using an affine change of coordinates, so that the
reference configuration is the isotropic state giving,

FV TW = |F |2 − α|F Tn|2 − β|F n0|2, (4.22)

where F is the deformation gradient measured in the isotropic reference state. The term α, where

0 < α < 1, describes the coupling between the nematic ordering and strain. The term β is the
degree of semisoftness in the elastomer; the case β = 0 is a soft elastomer.

Conti et al. then derived the thin film limit version of equation (4.22) to be,

FV TW = |F |2 + 1

det2F
− α|F T n|2 − β|F n0|2. (4.23)

Minimizing equation (4.23) over n gives,

FV TW = λ21 + (1 − α)λ22 +
1

λ21λ
2
2

− β|F n0|2, (4.24)

where λ1 and λ2 are the ordered singular values of F (λ1 ≤ λ2).

The quasi-convexified form of (4.24) was shown to be,

Wqc = β|F n⊥
0 |2 +

1

det2F
+





(1− β)
(
det2F/λ22(F ) + aλ22(F )

)
if detF ≤ a1/2λ22(F ) Hard

2a1/2(1 − β)detF if detF ≥ a1/2λ22(F ) Soft,

(4.25)

where the parameter a = 1− α
1−β and n⊥

0 is a unit vector perpendicular to n0.

The energy of equation (4.25), with detF = 1 enforced, was used as the constitutive equation in a

finite element model of semisoft nematic elastomer sheets. Numerical simulations were performed
on a triangular 2D mesh. Stretching was performed perpendicular to the initial director with rigid
clamping conditions. The force curves stretching perpendicular to n0 are initially stiff, as shown
in figure 4.9.
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Figure 4.9: (left) Force verus strain, stretching perpendicular to the initial director for parameters
β = 0.1, r = 3 and a = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3. (right) Director rotation at the centre of the
sample versus stretch, for β = 0.005, 0.01, 0.05, 0.1, 0.2 and a = 0.5 [69].

A threshold strain of a few percent is required to reach the semisoft plateau. The plateau corre-
sponds to the rotation of the director, see figure 4.9. The length of the semi-soft plateau decreases
with increasing a. At large strains the director becomes fully aligned with the stretch axis, and
the deformation becomes stiffer.

Dynamic model of Nematic Elastomers

Mbanga et al. (2010) studied the formation of stripes using a dynamic finite element model [98].
A sample of dimensions 1.5mm × 0.5mm × 50µm was uniformly meshed with 78000 tetrahedral
elements, with each element possessing a director orientation, n. All the directors are initially
oriented in the n0 direction, which is perpendicular to the stretch axis.

The material model consists of the energy of isotropic elastic solid, a kinetic energy term and
nematic terms. The nematic ordering is described by the Q-tensor, Qij =

1
2S(3ninj − δij), where

the order parameter S is taken as 1. The strain is written in terms of the Green-Lagrange tensor,

ǫij = 1
2

(
uijuji + ukiukj

)
. The total nematic energy of an elastomer, divided into p elements of

volume Vp, takes the form

Wnematic =
∑

p

Vp
1

2
Cijklǫijǫkl

︸ ︷︷ ︸
isotropic solid

+
∑

p

Vp
1

2
ρivi

2

︸ ︷︷ ︸
kinetic energy

+
∑

p

Vp

(
−αǫij(Qpij −Q0

ij)

)

︸ ︷︷ ︸
coupling strain to nematic order

+
∑

p

Vpβ(Q
p
ij −Q0

ij)
2

︸ ︷︷ ︸
preference for initial ordering

+
∑

<p,q>

γ(Qpij −Qqij)
2.

︸ ︷︷ ︸
penalize ∆Q between nearest neighbours

(4.26)

The nematic ordering and strain are coupled by the α parameter. The β parameter penalizes
deviations in Qij from its state during cross-linking. Gradients in Qij are penalized by the γ

parameter. Parameter values were chosen as µ = 5.7 × 105Pa, bulk modulus Br = 2.8 × 107Pa,
α = µ, β = 0.3µ, and γ = 107 J.

This model is dynamic, as it includes a kinetic energy term dependent on the material velocity.
An internal damping force was included in the model, which acts along the line between two nodes
and is proportional to their strain rate.



CHAPTER 4. REVIEW OF FINITE ELEMENT MODELS OF LCE 79

The spatial distribution of microstructure is shown in figure 4.10. At a strain of 10% the mi-
crostructure can be seen to form on a length-scale much larger than is experimentally observed. At
50% strain the bulk of the sample is free from microstructure, as the director has rotated parallel
to the stretch axis. The director partially rotates in regions near the clamps. These results are
qualitatively similar to the semi-soft simulations of Conti et al. (2002).

10%

50%

Unstrained

Figure 4.10: Director orientations stretching perpendicular to n0 at strains of 0%, 10% and 50%.
Regions with a director oriented at 0◦ or 90◦ to n0 are shown dark blue. Regions with a director
oriented at ±45◦ to n0 are shaded red.



Chapter 5

Finite Element Modelling of

Monodomain Smectic-A LCE

In this chapter the deformation of monodomain smectic-A elastomer is investigated for the case
of a rectangular sheet stretched between two clamps, with the initial layer normal oriented in the
plane of the sheet. The finite element model makes predictions about the spatial distribution of
microstructure and stress-strain behaviour, which can be related to the experimental literature.
The angle of the stretch axis relative to the initial layer normal is varied between 0◦ and 90◦, and
the predicted microstructure patterns are highly amenable to future experimental verification. It
is also interesting to simulate samples with different length to width aspect ratios, and to examine
the combined influence of aspect ratio and stretching angle.

5.1 Background

In smectic-A liquid crystals the layers are unstable to a buckling instability when strained parallel
to the layer normal [11]. Models of layered materials, containing free energy penalties for layer
curvature and layer dilation, exhibit layer buckling [99]. The models predict that at the buckling
threshold strain the layer modulation in a single direction is degenerate with bidirectional modu-
lation. At larger strain this degeneracy is removed and bidirectional modulation of the layers, as
illustrated in figure 5.1, is lower in energy.

Figure 5.1: The vertical displacements of an initially flat layer are sinusoidal for a strain just above
the buckling threshold in smectic-A liquid crystal [99]. The bidirectional buckling favours the
formation of square periodic cells; only four cells are depicted here. Increasing the strain causes
the cell size to grow and the buckling pattern becomes increasingly zigzag shaped.

This theory of bidirectional buckling is consistent with experiments on liquid smectics, where two
directions of buckling are observed in X-ray scattering patterns [100]. The smectic layer modulus
in liquid crystals is typically ∼ 107Pa. Layer buckling is relaxed away in liquid smectics by the

80
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propagation of dislocations into the layers that relieve the strain. In the smectic-A elastomer sam-
ples investigated by Nishikawa et al. the buckling of layers is not relaxed away by the propagation
of defects. However samples with highly defective layer structures behave differently to the largely
defect-free samples of Nishikawa et al. [25].

Nishikawa et al. reported that on stretching perpendicular to the layer normal the sample remains
transparent, and has Poisson’s ratios of (0, 1) [21]. This indicates that the the deformation is
accommodated within the layers. The modulus is of order µ ∼ 105Pa for this deformation. On
stretching parallel to the layer normal the sample is initially much stiffer, having the modulus B,
and Poisson’s ratios of (12 ,

1
2 ). The elastic modulus drops sharply to ∼ µ above a threshold strain

of a few percent, where the elastomer becomes cloudy [19]. The X-ray scattering pattern indicates
that the layers are buckled, and the reduction in X-ray intensity shows that the modulation is in
more than one direction as layers tilt out of the X-ray scattering plane.

It should be possible to distinguish unidirectional buckling from bidirectional buckling by viewing
the sample between a crossed polariser-analyser pair. The optical axis in smectic-A elastomer is
parallel to the director, so the simple laminates associated with unidirectional layer buckling will
appear as light and dark striped domains, much like nematic elastomer stripes. In bidirectional
buckling the director varies rapidly in both buckling directions, so will always be bright when
viewed between the polariser-analyser. Unbuckled regions will appear dark when the polariser (or
analyser) is parallel to the optical axis, and have maximum brightness when the polariser is at 45◦

to the optical axis. It is anticipated that both types of buckling will appear opaque to the naked
eye, similar to striped domains in nematic elastomers (see Refs. [56, 78], and Fig. 8.10 of [60]).

The finite element material model used in this work is based on a coarse grained smectic-A free
energy, so does not resolve the microstructure. To accurately model the microscopic length scale
on which buckling occurs requires the inclusion of spatial gradient terms, for example those arising
from Frank elastic energy. This approach would be highly computationally expensive and is not
pursued here. Instead the coarse grained free energy model is used to model realistic geometries of
tensile loading that have been studied experimentally.

5.2 Finite Element Material Model

The total free energy W̃tot, introduced in equation (3.53) of chapter 3, is

W̃tot(λ) =





λ−4
0 |λ · n0|2 + f(λ20b̃, λ

2
0d̃) + W̃MR det λ = 1

∞ else

(5.1)

where f(λ20b̃, λ
2
0d̃) =





b+
d2

b
+ k(d− q)2 d ≥ kqb

kb+ 1
AS

b+
kq2

kb+ 1

b ≥ q − 1

k
and

d ≤ kqb

kb+ 1

UB

2q − 1

k
b ≤ q − 1

k
BB

(5.2)

It is useful to express W̃tot in terms of the invariants of the Cauchy-Green tensor, C = λT · λ. The
term λ−4

0 |λ · n0|2 is simply λ−4
0 A4. The parameters b̃ and d̃ are,

b̃ =
A1 −A4 +

√
(A1 +A4)2 − 4(A2 +A5)

2
, (5.3)

d̃ =
√
A2 +A5 −A1A4, (5.4)
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and the Mooney-Rivlin term is,
W̃MR(λ) = cMRA2. (5.5)

Some care must be taken in treating these expressions numerically. Firstly in equation (5.3) the
two terms (A1+A4)

2 and 4(A2+A5) are typically close together. This subtractive cancellation can
lead to large numerical errors. Secondly the derivatives of the free energy are required to compute
the stresses in the material. Differentiating the square root expression in equation (5.3) gives an
expression that diverges when (A1 + A4)

2 = 4(A2 + A5). It is useful to smooth the divergence in
this expression by adding a small value ǫ ∼ 10−5 to the contents of the square root.

The material energy, W̃tot(λ), was implemented in the commercial finite element code Abaqus 6.10

[96] by writing a UANISOHYPER INV subroutine for the standard implicit integration scheme. The
numerical method in this routine is based on previous work implementing invariant based elasticity
[101, 102]. Incompressibility is enforced within this code by specifying type=incompressible in the
material definition in the input file. The anisotropy parameter local directions=1 is specified,
with the local direction defined as n0. The Fortran code for the material routine is included in
Appendix C, along with an example input file.

Rigid clamping boundary conditions were used on the end faces of the elastomer. In Abaqus these
constraints are implemented as pinned displacement boundary conditions, e.g. U1=0.64,U2=0 and
U3=0 at the mobile clamp. Experimentally an alternative to rigid clamping is to secure the ends
of the elastomer with tape, which allows a contraction in thickness of the elastomer at the clamp.
Simulations using tape-like boundary conditions produce very similar stress-strain curves to rigid
clamping with a slight difference in microstructure near the clamps.

The elastomer was deformed by moving one of the clamps to achieve a total deformation of λ = 1.4,
with the step size increment constant at 5× 10−3.

Model Parameters

The material parameters are chosen to be similar to values found by Nishikawa et al. [19, 21]. The
parameters listed in Table 5.1 describe the smectic layer modulus B, the rubber shear modulus µ,
and a polymer anisotropy r appropriate for a prolate side chain LCP. Equations (3.13),(3.14) and
(3.47) can then be used to find q, k and λ0.

Parameter (symbol) Value
B 3.6× 106Pa
µ 105Pa
r 1.95
K 10−11N

λ0 0.895
k 48.43
q 0.780

cMR 0.14

Table 5.1: Smectic-A Model Parameters

Equation (3.90) gives the threshold strain to bidirectional buckling for a stretch parallel to n0 as
λth = λ20(q − 1/k)−1, for these values λth = 1.053.

Following the work of Nishikawa et al. [19] the sample will initially be taken as a rectangular
cuboid of dimensions 1.6 cm × 1.0 cm × 500µm. The value of the layer buckling term, cMR, can
then be estimated by examining the effect of cMR when stretching parallel to n0. The width of
the middle of the sample W was measured as a function of deformation. Figure 5.2 shows that if
cMR = 0 then the incremental Poisson’s ratios are (1, 0) above the threshold, which is inconsistent
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with experimental findings [19]. Whereas a value of cMR = 0.14 successfully approximates the
deformed state shown in figure 1.11.
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Figure 5.2: Deformation across the width of the sample as a function of the deformation applied
parallel to n0.

A similar value of the Mooney-Rivlin coefficient can be estimated from equation (3.77) with Lx ∼
1 cm and K = 10−11N. This is also broadly consistent with the work of Stannarius et al., who
performed mechanical experiments on smectic-A LCE balloons and found that Mooney-Rivlin
coefficients in the range 0 < cMR < 0.1 could fit their experimental data [44].

Mesh Verification

Initial tests of the UANISOHYPER INV subroutine were conducted on a single C3D8H (8-node linear
brick hybrid) element. These showed that the model is correctly equilibriated, as no stresses are
present at zero deformation. When stretching parallel to n0 the expected stress-strain curve was
reproduced. Integration points undergo a transition from the AS to BB phase at the correct
threshold strain.

The subroutine was then tested with C3D8RH (reduced-integration) and C3D20H (twenty-node)
elements and it was confirmed that the results were independent of the element-type.

The thin film was represented using uniform meshes with between 800 (40 × 20 × 1) and 32, 000
(200× 160× 1) elements. These meshes were observed to achieve equivalent results. Computations
were also performed using biased meshes, which achieved stress solutions within 0.5% of uniform
meshes. Equivalent results were also obtained with thicker meshes (100× 50× 5).

The results presented in the following sections were obtained using a rectangularly uniform mesh
of 5000 (100× 50× 1) C3D8H elements.
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5.3 Tensile Deformation of Smectic-A Elastomer Sheets

Elongation parallel and perpendicular to the director

Figure 5.3: Spatial distribution of microstructure stretching parallel to n0, at strains of λ = 1,
1.04, 1.056, 1.08, 1.12, 1.2 and 1.4. Sample dimensions are 1.6 cm × 1.0 cm × 500µm.
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The spatial distribution of phase of the sample is shown in figure 5.3. At a strain of λ = 1.04 the
sample is beneath the buckling threshold λth ∼ 1.053, so no microstructure forms. Just above the
buckling threshold, at λ = 1.056, almost the whole sample is in the UB phase. Then at higher
strains the bulk of the sample moves to the BB phase, with the UB phase persisting only in the
vicinity of the clamps. The material near the clamps is constrained in a way that prevents isotropic
deformation, meaning it tends to form UB microstructure rather than BB microstructure. The
shape of the deformed sample is similar to that of the isotropic neo-Hookean elastomer shown in
figure 5.5(c), which means the Poisson’s ratios post-buckling are (12 ,

1
2 ).

The stress-strain curve for deformation parallel to n0 is shown in figure 5.4. This curve, obtained
from finite element modelling, is in agreement with the stress-strain curve obtained for a uniform
deformation shown in figure 3.12.
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Figure 5.4: Nominal stress stretching parallel to n0, for different values of cMR.

On stretching the sample perpendicular to n0 no buckled microstructure forms, as shown in figure
5.5(b). This behaviour is consistent with the uniform deformation case shown in figure 3.11. The
layer spacing is constant and the sample deforms with Poisson’s ratios of (1, 0).

Figure 5.5: Microstructure distribution when stretching smectic-A elastomer perpendicular to n0,
shown at (a) λ = 1 and (b) λ = 1.4. For comparison (c) shows an isotropic neo-Hookean sample,
with free energy W (λ) = C1(A1 − 3) + 1

D1
(A3 − 1)2, where C1 = 2 and D1 = 10−6.
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Elongation at an arbitrary angle to the director

The stress-strain behaviour for elongations at various angles to n0 are shown in figure 5.6 for an
elastomer with the same aspect ratio as those of Nishikawa et al.
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Figure 5.6: The nominal stress as a function of deformation, where n0 is oriented in the plane of
the film at an angle θ to the elongation axis.

For elongations within ∼ 10◦ of n0 the stress-strain curve still resembles that of the parallel case.
However for elongations at ∼ 20◦ and above there is no longer a well defined threshold transition
to a lower modulus. The corresponding spatial distribution of microstructure for elongations at
various angles to n0 are shown in figure 5.7.

Figure 5.7: Microstructure distribution for elongations at 1◦, 2◦, 5◦, 10◦, 20◦, 30◦, 45◦ and 70◦ to
n0, shown at a deformation of 1.4. The sample dimensions are 1.6 cm × 1.0 cm × 500µm

These results show that elongations at an angle within ∼ 1◦ of n0 result in the BB phase forming
in the bulk of the sample, with UB phase at the clamps. At a stretching angle of 2◦ the UB phase
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forms at the free edges of the sample. The formation of UB microstructure is accompanied by
λxz shears present in these regions of the sample. Note that for angles above ∼ 20◦ there is no
percolation of the strip of the UB phase across the sample. This coincides with the disappearance
of the threshold in the stress-strain response.

The stretching of a sample at a 5◦ inclination to the director will now be examined in more depth;
the spatial distribution of microstructure is shown in figure 5.8 for various strains.

Figure 5.8: Microstructure distribution when stretching at 5◦ to n0 at strains of 1.04, 1.056, 1.08,
1.12, 1.2 and 1.4. The dashed region is explored in more detailed in Fig. 5.9.

At the threshold strain the sample clearly forms a stripe of UB phase, which runs between opposite
corners of the elastomer. Due to the clamping conditions the material along the stripe is being
stretched roughly parallel to the initial director, which causes a transition to the UB phase. At
high strains the central region of the elastomer undergoes a transition to the BB phase, whereas
the free edges of the sample are largely in the UB phase.
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The spatial phase distribution is closely related to the spatial shear strain distribution, as shown
in figures 5.9(a) and (b). Only the weakly sheared, central area of the sample is in the BB phase.
Strong shears result in a transition from the BB to UB phase. For an imposed deformation of
λxx = 1.4 the transition occurs at a λxz ∼ 0.4, which is equivalent to an engineering shear strain
of γxz = (λxz + λzx)/2 ∼ 0.2. The γxy and γyz shears are practically zero for the region shown.

Figure 5.9: (a) Spatial microstructure distribution, the thickness of the cross-section has been
exaggerated by a factor of 4 for clarity. (b) γxz engineering shear strain, (c) ǫxx engineering strain
and (d) ǫyy engineering strain for the dashed region of figure 5.8.

The strains, ǫxx and ǫyy, are distributed inhomogeneously, as shown in figures 5.9(c) and (d). The
ǫxx strain is lower near regions without any microstructure. The ǫyy strain represents the thickness
of the sample. The regions of the sample in the BB phase have a near uniform thickness and
are thinner than regions in the UB phase. It is interesting to analyse the (b̃,d̃) values of elements
located along the dashed line of figure 5.9(a), as plotted in figure 5.10.
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Figure 5.10: The phase of elements on the dashed line of figure 5.9 (i) is shown in (b̃, d̃) space. The
trajectory λ1 is a deformation, of the form equation (5.6), with γ = 0.73, θ = 5◦, λ1 = 1.4, and

λxz = 0 to 0.4. Trajectory λ2 is a deformation with γ = 0.1, θ = 5◦, λ1 = 1.4 and λxz = 0.4 to 0.7.

It is possible to understand the distribution of elements in phase space, shown in figure 5.10, by
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considering a uniform deformation at an angle θ to n0 consisting of an elongation with a variable
Poisson’s ratio, and a λxz shear,

λ =



λ1 0 λxz
0 1

λγ
1

0

0 0 1

λγ−1
1


 ·



cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 . (5.6)

Elements at the centre of the dashed line of figure 5.9 are in the BB phase, and have almost zero
shear strain. Moving away from the centre of the sample, in either direction, the elements are
subjected to an increased amount of shear, which is illustrated by the trajectory labelled λ1 in

figure 5.10. It is the additional shearing that drives the transition from the BB into the UB phase.
Once the UB phase is reached the thickness of the sample increases. This is because the UB phase
consists of buckling in only one direction, and is therefore thicker in the direction perpendicular to
the plane in which the microstructure laminates are formed. Moving towards the free edges of the
sample the increasing shear nearly causes a transition from the UB to AS phase, as illustrated by
the trajectory λ2 in figure 5.10.

Aspect Ratio

So far only samples with the aspect ratio of 1.6 have been investigated. Other work on smectic-A
elastomers has used different sample aspect ratios such as Komp et al. [25], where the sample
dimensions were 2 cm × 0.4 cm × 100µm, i.e. an aspect ratio of 5. It is therefore interesting to
study samples with different length to width ratios, at constant film thickness. Figure 5.11 shows
that varying the aspect ratio alters the stress-strain curves obtained when stretching at a small
angle to n0, but produces the same stress strain curves when stretching parallel to n0.
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Figure 5.11: Nominal stress as a function of deformation for elongation at 0◦ and 10◦ to n0, for
aspect ratios of 1.6 and 8.

The spatial microstructure distribution is highly sensitive to the aspect ratio. Figure 5.12 shows
the microstructure distribution in a sample with an aspect ratio of 8.

When compared to figure 5.7, where the aspect ratio is 1.6, it can be seen that the larger aspect
sample reverts to the AS phase for smaller angles of inclination of the deformation to the layer
normal. Qualitatively this is because a smaller fraction of the sample is taken up by the end region
near the clamps as the aspect ratio increases. Hence the layer normal is less constrained in its
rotation by these end regions, and can adopt the lowest energy orientation rotated away from the
elongation axis. For the aspect ratio of 8 an inclination of as little as 2◦ results in the sample forming
the UB phase rather than the BB phase. This may make it difficult to experimentally observe BB
microstructure in high aspect ratios samples by stretching parallel to n0. The sensitivity of the
microstructure to the deformation direction is increased for larger values of B/µ.
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Figure 5.12: Microstructure distribution when stretching at 1◦, 2◦, 5◦ and 10◦ to n0 at a strain of
0.4. The sample dimensions are 8.0 cm × 1.0 cm × 500µm, which is an aspect ratio of 8.

The microstructure distribution in a sample with an aspect ratio of 0.8 is shown in figure 5.13.
These patterns are similar to those of a sample with an aspect ratio of 1.6, except that at low
aspect ratio the UB phase near the clamps occupies a greater proportion of the elastomer.

Figure 5.13: Microstructure distribution when stretching at 1◦, 2◦, 5◦ and 10◦ to n0 at a strain of
0.4. The sample dimensions are 0.8 cm × 1.0 cm × 500µm, which is an aspect ratio of 0.8.

The effects of aspect ratio are summarised in figure 5.14, which shows the phase present in the
centre of the sample for various aspect ratios and stretching angles. The lowest aspect ratio forms
UB phase for all stretching angles 0◦-10◦, as the effect of the clamps dominate the whole sample.
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Figure 5.14: The phase found in the centre of the sample at a deformation of λ = 1.4, for various
aspect ratios and stretching angles relative to n0.

At high aspect ratios the effect of the clamps on the centre of the sample diminishes and the BB
phase forms for very small angles. However a small deviation from stretching parallel to the layer
normal results in the formation of the UB phase. Experimental studies on higher aspect ratio sam-
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ples [25] show no opacity when stretching parallel to the layer normal. A possible explanation for
this behaviour is that the layer normal is slightly misaligned with the stretch direction. However in
order for the AS phase to occupy the bulk of the sample it would require a significant misalignment,
greater than 5◦. Also a large misalignment would create a significant, near-uniform γxz shear in
the bulk of the sample, which would rotate the layer normal in the x-z plane. Whereas the X-ray
scattering data indicates that the layer normal does not reorient in the plane of the film .

It is also possible to vary the thickness of the sample at a constant length to width ratio. This was
investigated by modelling samples between 10 times thicker and thinner than previously considered.
These results reproduce qualitatively similar microstructure distributions and stress-strain curves,
which demonstrates that the achieved results are largely independent of the sample thickness.

5.4 Conclusions

The stretching of monodomain smectic-A elastomer sheets was studied numerically using the free
energy model, described in chapter 3. The model consists of the coarse grained smectic-A en-
ergy, derived in reference [80], augmented with a Mooney-Rivlin term to account for the energy
of deforming buckled layers. This model is successful in reproducing the experimentally observed
Poisson’s ratios post-buckling. The magnitude of the Mooney-Rivlin term can be measured ex-
perimentally by a two step deformation process; first deforming the elastomer parallel to the layer
normal, then deforming perpendicular to this direction. The modulus of the elastomer during this
second step indicates the magnitude of cMR.

A sample with dimensions and material parameters similar to those of Nishikawa et al. was
investigated. When elongated parallel to n0 the majority of the sample is predicted to form a
bidirectionally buckled microstructure, except at the clamps where unidirectional microstructure
is expected. Experimentally these microstructural differences should be distinguishable using X-ray
scattering patterns or polariser-analyser pair. When elongated at a small inclination to the layer
normal the phase of the sample is sensitive to the aspect ratio of the sample. For small aspect
ratios the bidirectionally buckled phase persists to large angles. For large aspect ratios no buckled
phase is observed in the bulk of the sample for small inclination angles.

Some experimental studies on side chain smectic-A elastomers show that the sample remains op-
tically transparent on stretching [25]. A small or large misalignment of the layer normal with the
stretch direction is not consistent with the behaviour found in the model. However, a 3D X-ray
scattering experiment that resolves spatially different regions of the smectic film would provide a
useful comparison with the model presented here.



Chapter 6

Summary

Modelling semi-soft Smectic-C Elastomer

The aim of this work was to investigate the mechanical response of a smectic-C model, with an
additional semi-softness term included. Semi-soft elasticity is expected in smectic-C elastomers,
as like nematic elastomers the perfectly soft behaviour predicted for rotations of the polymer
anisotropy will be destroyed by non-idealities. The inclusion of semi-softness significantly alters
the mechanical response, and results in unusual behaviour such as negative stiffness. The model
of monodomain smectic-C elastomer includes energy contributions from nematic, semi-soft and
smectic layer elasticity terms, and a penalty for changing the tilt angle. The stress-strain responses
for uniform deformations were calculated using an energy minimization routine.

When stretching parallel to the layer normal the rotation of the director in the Sm-C soft mode
causes the sample thickness to expand and then contract. A negative incremental Poisson’s ratio
of up to ν ∼ −1.5 has been found for typical model parameters. The semi-soft parameter α
delays director rotation, and the initial stiffness will reflect the smectic modulus provided the tilt
modulus c → ∞. Once director rotation has started the elastomer has a negative incremental
Poisson’s ratio, and a negative stiffness. The negative stiffness is a consequence of the Sm-C soft
mode deformations and the form of the semi-softness term.

When stretching perpendicular to the layer normal and the director, the response is reminiscent
of a semi-soft nematic elastomer, as the director rotates towards the stretch axis once a threshold
strain is reached and the layers do not reorient. The stress-strain curve shows a semi-soft plateau,
which becomes less well defined for larger values of semi-soft parameter α.

When stretching perpendicular to the director with the layer normal coplanar, an instability in the
director orientation is predicted. The director jumps from an unrotated state to a rotated state
at a threshold strain. The semi-soft term provides an energy barrier to director rotation, so the
threshold strain increases with increasing values of the semi-soft parameter. The jump in director
orientation causes a discontinuity in the stress-strain curve, i.e. a dramatic decrease in stress once
the director has rotated.

When stretching parallel to the director the stress-strain response is monotonic and the stiffness
is indicative of the rubber modulus. The layer normal rotates away from the stretch axis, and the
director follows due to the constraint of the tilt angle.

Modelling realistic deformations of smectic-A elastomer

The deformation of monodomain smectic-A elastomer sheets was modelled under realistic clamp-
ing conditions using finite element analysis. The motivation for this work was to improve the
understanding of the buckling instability that occurs when stretching parallel to the director, as
observed by Nishikawa et al. [19]. The model is used to predict the spatial distribution of buckled
microstructure, and investigate the combined effects of sample aspect ratio and varying the angle
of the stretch relative to the director.

92
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The constitutive model used was the coarse grained smectic-A energy [80], augmented with an
additional Mooney-Rivlin term to account for the energy of deforming buckled layers. The addi-
tional term is necessary to reproduce the experimentally observed Poisson’s ratios post-buckling.
The magnitude of the Mooney-Rivlin term cMR can be measured experimentally by a two step
deformation process; first deforming the elastomer parallel to the layer normal, then deforming
perpendicular to this direction. The modulus of the elastomer during this second step indicates
the magnitude of cMR.

A sample with dimensions and material parameters similar to those of Nishikawa et al. was
investigated. When elongated parallel to n0 the majority of the sample is predicted to form a
bidirectionally buckled microstructure, except at the clamps where unidirectional microstructure
is expected. Experimentally these microstructural differences should be distinguishable using X-
ray scattering patterns or polariser-analyser pair. When elongated at a small inclination to n0
the phase of the sample is sensitive to the aspect ratio of the sample. For small aspect ratios the
bidirectionally buckled phase persists to large angles. For large aspect ratios no buckled phase is
observed in the bulk of the sample for small inclination angles.

Some experimental studies on side chain smectic-A elastomers show that the sample remains op-
tically transparent on stretching [25]. Conceivably this could be caused by a misalignment of the
director with the stretch direction, however the results of this study do not support this. An al-
ternative constitutive model is required to describe smectic-A elastomers where the smectic layers
are not strongly coupled to the rubber matrix [25, 28, 38].

6.1 Further Work

Modelling pseudo-monodomain Smectic-C Elastomer

The work presented here needs to be extended if it is to meet with the existing experiments on
smectic-C pseudo-monodomains. This would require modelling the domain microstructure present
in a pseudo-monodomain. A possible simplification is to ignore the compatibility of the domains
and calculate the stiffness of a representative sample of domains stretched in parallel and in series.
These approximations are known as the Taylor and Sachs bounds and correspond to the stiffest
and softest behaviours possible [103, 104], as explained in Appendix D. However these bounds are
only valid for materials with positive stiffness, and semi-soft Sm-C elastomer is negatively stiff in
many geometries.

Another option would be to resolve how neighbouring domains constrain each other in a small
region of a Sm-C microstructure, i.e. by simulating a few domains using the finite element method.
The averaged behaviour of the microstructure could then be extrapolated to model a macroscopic
sample. Unfortunately the quasi-convex envelope of the smectic-C energy is not yet known, so
there is currently no constitutive model suitable for finite element modelling Sm-C elastomer.

Modelling interfaces in Smectic-A elastomer

The buckled microstructure of smectic-A elastomers includes a large number of interfaces between
regions with differently oriented directors, and each interface has an energetic cost due to the Frank
elasticity. The behaviour of the post-buckled microstructure is influenced by the interfacial energy
cost, as well as the rubbery elasticity. The interfacial energy could be incorporated into existing
smectic-A models by adding the Frank elasticity splay term,

F =
1

2
K(∇ · n)2 + FSm−A.

The complexity of this model could be reduced by considering a two dimensional case. Minimizing
this energy would result in equations for the director orientation profile. The time-dependence of
microstructure formation could also be be probed, as the displacement u responds in a viscous way
to the forces, i.e

∂u

∂t
= −δF

δu
.
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Layer creation in monodomain Smectic-A elastomer

A number of smectic-A samples exhibit a stress-strain threshold, but do not show evidence of
a buckling instability [25, 28, 38]. Komp et al. suggest that new smectic layers are created
upon extension in their side-chain system [25]. Kramer et al. argue that the defective layer
structure causes the breakdown of layers under strain. Beyer et al. associate the instability with
the unfolding of hairpin chains in their main-chain system [38]. These behaviours are all similar,
in as much as they imply that mesogens can leave the smectic layer they start in. Currently the
experimental evidence indicating that mesogens jump between layers in elastomer is indirect, but
layer formation is observed in Sm-A liquid crystals [11]. It may similarly be possible to directly
observe the propagation of layer defects in elastomers using optical microscopy.

A simple model of these systems is to assume that the energetic cost of layer creation is linear in
strain ǫ. The creation of new layers would stretch the polymer chain backbone, so the associated
stiffness is likely to be comparable to the rubber modulus. The energetic cost of layer stretching
is ∼ 1

2Bǫ
2. Interestingly this model results in a stress-strain threshold behaviour when stretching

parallel to the layer normal. At low strains it is energetically cheapest to deform by layer stretching,
but above a threshold layer creation becomes favourable, see figure 6.1

Figure 6.1: The stess-strain curve for the Sm-A monodomain of Komp et al. [25], with layer
stretching and layer creation deformation modes illustrated.

Modelling non-embedded layer reorientation

Experiments on main chain smectic-C polydomains indicate that the layers do not deform like
embedded planes, as the layer normals do not rotate away from the stretch axis at high strain
[33, 34]. Instead these samples reorient to form a pseudo-monodomain, with the director parallel
to the stretch axis. The layers in these systems appear to have an additional freedom, which might
be expected if the deformation mode does not preserve the smectic layers, e.g. hairpin unfolding
in main-chain systems or layer creation in highly defective samples.

Sánchez-Ferrer et al. observe that a pseudo-monodomain stretched perpendicular to the director
reorients to form a pseudo-monodomain with the director parallel to the stretch axis once λ > 6 [15].
The corresponding modulus is rubbery, indicating a fixed layer spacing. A tentative explanation
is that the deformation mode creates additional layers, which permits the layer normals to rotate
towards the stretch axis. This freedom allows the layer normals to be maintained at the tilt angle
relative to the stretch axis, so that the director is aligned with the stretch direction. Currently
there is no quantitative model of non-embedded layers. The layer normal orientation would be
dependent on the proportion of created layers, and the deformation matrix.



Appendix A

Smectic-C Energy Minimization Routine

A Fortran 90 program to minimize the semi-soft smectic-C energy is given here. In this program the
tilt angle is taken as fixed and not minimized over. The minimization is performed by a subroutine
simann, which implements the simulated annealing algorithm described by Goffe et al. [75]. The
code for the simann subroutine is not included here, as it is identical in function to the original
implementation. Suitable minimization control parameters for successful minimization are T =
1.0, RT = 0.95, NS = 20, NT = 10 and MAXEVL = 800000.

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!% Define the global variables %

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

module globvars

implicit none

integer, parameter :: SP = kind(1.0d0)

integer, parameter :: WP = kind(1.0d0)

! The reduced smectic modulus B/mu is bmod, the tilt modulus is cmod,

! and the semi-soft parameter is alpha.

! The initial tilt angle is q0, the tilt angle is qangle,

! and the polymer anisotropy is ranist. The imposed lxx strain is limp.

! The initial orientation of n and k are (nx0,ny0,nz0) and (k0x, k0y, k0z).

! The nematic, smectic, semisoft and tilt energies are fnem, fsm, fss, ftilt.

real (kind = WP) :: bmod, cmod, alpha, q0, qangle, ranist,&

& limp, nx0, ny0, nz0, k0x, k0y, k0z, fnem, fsm, fss, ftilt

end module globvars

module function

use globvars

implicit none

contains

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!% Functions to return the smectic-C energy %

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function fnemenergy(k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz)

real (SP) :: fnemenergy

real (SP) , intent(in) :: k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz

fnemenergy = (lzz**2*(1 + nz**2*(-1 + 1/ranist))*(1 + nz0**2*(-1 + ranist)) + &

& (ny*nz*(lxx*lyz*lzz + nz0*(ny0 + lxx*lyz*lzz*nz0)*(-1 + ranist))*(-1 + 1/ranist))/lxx - &

& ((lxx**2*(1 + nx0**2*(-1 + ranist)) + lxy**2*(1 + ny0**2*(-1 + ranist)) + &

& lxz**2*(1 + nz0**2*(-1 + ranist)) + 2*lxy*lxz*ny0*nz0*(-1 + ranist) + &

& 2*lxx*nx0*(lxy*ny0 + lxz*nz0)*(-1 + ranist))*(nx**2*(-1 + ranist) - ranist))/ranist - &

& ((1 + lxx**2*lyz**2*lzz**2*(1 + nz0**2*(-1 + ranist)) + ny0**2*(-1 + ranist) + &

& 2*lxx*lyz*lzz*ny0*nz0*(-1 + ranist))*(ny**2*(-1 + ranist) - ranist))/&

& (lxx**2*lzz**2*ranist) + (2*nx*ny*(-lxy - lxx*lyz*lzz*(lxz + nz0*&

& (lxx*nx0 + lxy*ny0 + lxz*nz0)*(-1 + ranist)) - ny0*(lxx*nx0 + lxy*ny0 + lxz*nz0)*&

& (-1 + ranist))*(-1 + ranist))/(lxx*lzz*ranist) - (2*lzz*nx*nz*(lxz + nz0*&

& (lxx*nx0 + lxy*ny0 + lxz*nz0)*(-1 + ranist))*(-1 + ranist))/ranist - (ny*nz*&

& (lxx*lyz*lzz + nz0*(ny0 + lxx*lyz*lzz*nz0)*(-1 + ranist))*(-1 + ranist))/(lxx*ranist))/2.

end function fnemenergy

function fssenergy(k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz)

real (SP) :: fssenergy

95



APPENDIX A. SMECTIC-C ENERGY MINIMIZATION ROUTINE 96

real (SP) , intent(in) :: k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz

fssenergy = -(alpha*(ny**2*(-1 + (ny0 + lxx*lyz*lzz*(-1 + nz0))*&

& (ny0 + lxx*lyz*lzz*(1 + nz0))) + &

& lxx**2*lzz**2*(lzz**2*nz**2*(-1 + nz0**2) + &

& 2*lzz*nx*nz*(lxx*nx0*nz0 + lxy*ny0*nz0 + lxz*(-1 + nz0**2)) + &

& nx**2*(lxx**2*(-1 + nx0**2) + lxy**2*(-1 + ny0**2) + &

& 2*lxy*lxz*ny0*nz0 + 2*lxx*nx0*(lxy*ny0 + lxz*nz0) + &

& lxz**2*(-1 + nz0**2))) + &

& 2*lxx*lzz*ny*(lzz*nz*(ny0*nz0 + lxx*lyz*lzz*(-1 + nz0**2)) + &

& nx*(-lxy + ny0*(lxx*nx0 + lxy*ny0 + lxz*nz0) + &

& lxx*lyz*lzz*(-lxz + nz0*(lxx*nx0 + lxy*ny0 + lxz*nz0))))))/&

& (2.*lxx**2*lzz**2)

end function fssenergy

function fsmenergy(k0x, k0y, k0z, lxx, lxy, lxz, lyz, lzz)

real (SP) :: fsmenergy

real (SP) , intent(in) :: k0x, k0y, k0z, lxx, lxy, lxz, lyz, lzz

fsmenergy = (bmod*(-1 + 1/&

& Sqrt(k0x**2/lxx**2 + (k0y*lxx*lzz - k0x*lxy*lzz)**2 + &

& (k0y*lxx*lyz + (k0x*lxz - lxx*(k0z + k0x*lxy*lyz*lzz))/&

& (lxx*lzz))**2))**2)/2.

end function fsmenergy

function ftiltenergy(q0, qangle)

real (SP) :: ftiltenergy

real (SP) , intent(in) :: q0, qangle

ftiltenergy = (cmod*(cos(q0)**2 - cos(qangle)**2)**2)/2.

end function ftiltenergy

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!% Subroutine that recieves the point xc from simann %

!% and returns the Smectic-C energy %

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SUBROUTINE FCN(n,xc,funct)

integer, intent(in) :: n

real (SP), intent(in) :: xc(n)

real (SP) ftotal, funct

real (SP) :: fnem, fsm, fss

real (SP) :: k1, k2, k3, c1, c2, c3, lxx, lxy, lxz, lyz, lzz, p, nx, ny, nz

call conv_vars(xc, lxy, lxz, lyz, lzz, p)

lxx = limp

k1 = kx(lxx, lxy, lxz, lyz, lzz)

k2 = ky(lxx, lxy, lxz, lyz, lzz)

k3 = kz(lxx, lxy, lxz, lyz, lzz)

c1 = cx(k1, k2, k3, p)

c2 = cy(k1, k2, k3, p)

c3 = cz(k1, k2, k3, p)

nx = k1* cos(q0) + c1 * sin(q0)

ny = k2* cos(q0) + c2 * sin(q0)

nz = k3* cos(q0) + c3 * sin(q0)

fnem = fnemenergy(k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz)

fss = fssenergy(k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz)

fsm = fsmenergy(k0x, k0y, k0z, lxx, lxy, lxz, lyz, lzz)

ftotal = fnem + fsm + fss

funct = 1.0/ftotal

RETURN

END Subroutine

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!% Subroutine to convert the parameters x(:) from %

!% the range [0,1] into physical variables. %

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine conv_vars(x, lxy, lxz, lyz, lzz, p)

real(SP), intent(in) :: x(:)
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real(SP), intent(out) :: lxy, lxz, lyz, lzz, p

lxy = (x(1)-0.5)*3

lxz = (x(2)-0.5)*3

lyz = (x(3)-0.5)*3

lzz = 0.5+x(4)

p = 0.0+x(5)*2*3.141592

end subroutine conv_vars

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!% Functions to return the values of the %

!% layer normal and director %

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function cx(k1, k2, k3, p)

real (SP) :: cx

real (SP) , intent(in) :: k1, k2, k3, p

cx = - ( Sqrt(k2**2 + k3**2)*Cos(p) )

end function cx

function cy(k1, k2, k3, p)

real (SP) :: cy

real (SP) , intent(in) :: k1, k2, k3, p

cy = - ( -((k1*k2*Cos(p))/Sqrt(k2**2 + k3**2)) + &

& Sqrt(1 - k2**2)*Sqrt(-(k3**2/((-1 + k2**2)*(k2**2 + k3**2))))*Sin(p) )

end function cy

function cz(k1, k2, k3, p)

real (SP) :: cz

real (SP) , intent(in) :: k1, k2, k3, p

cz = - ( -((k1*k3*Cos(p))/Sqrt(k2**2 + k3**2)) - &

& (k2*Sqrt(1 - k2**2)*Sqrt(-(k3**2/((-1 + k2**2)*(k2**2 + k3**2))))*Sin(p))/&

& k3)

end function cz

function kx(lxx, lxy, lxz, lyz, lzz)

real (SP) :: kx

real (SP), intent(in) :: lxx, lxy, lxz, lyz, lzz

kx = k0x/(lxx*Sqrt(k0x**2/lxx**2 + (k0y*lxx*lzz - k0x*lxy*lzz)**2 + &

& (k0y*lxx*lyz + (k0x*lxz - lxx*(k0z + k0x*lxy*lyz*lzz))/(lxx*lzz))**2))

end function kx

function ky(lxx, lxy, lxz, lyz, lzz)

real (SP) :: ky

real (SP), intent(in) :: lxx, lxy, lxz, lyz, lzz

ky = ((k0y*lxx - k0x*lxy)*lzz)/&

& Sqrt(k0x**2/lxx**2 + (k0y*lxx*lzz - k0x*lxy*lzz)**2 + &

& (k0y*lxx*lyz + (k0x*lxz - lxx*(k0z + k0x*lxy*lyz*lzz))/(lxx*lzz))**2)

end function ky

function kz(lxx, lxy, lxz, lyz, lzz)

real (SP) :: kz

real (SP), intent(in) :: lxx, lxy, lxz, lyz, lzz

kz = (-(k0x*lxz) + lxx*(k0z + (-(k0y*lxx) + k0x*lxy)*lyz*lzz))/&

& (lxx*lzz*Sqrt(k0x**2/lxx**2 + (k0y*lxx*lzz - k0x*lxy*lzz)**2 + &

& (k0y*lxx*lyz + (k0x*lxz - lxx*(k0z + k0x*lxy*lyz*lzz))/(lxx*lzz))**2))

end function kz

end module function

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!% Minimize the Smectic-C Semisoft Energy %

!% for the case of a fixed tilt angle %

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

program main

use globvars

use function

implicit none

! Define the variables used in the program.

integer, parameter :: n=5 ! n is the number of variables to be minimized over.

real (SP) ::f, fold, xc(n) ! f is the energy, xc(n) are the optimised variables on the range [0,1].
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integer :: i, STEPS

real (SP) :: c1, c2, c3, k1, k2, k3, nx, ny, nz

real (SP) :: straininc ! the increment of imposed strain.

real(SP) :: lxx, lxy, lxz, lyz, lzz, p ! the strain tensor components and the director rotation angle.

! Define the material parameters

bmod = 60

ranist = 2

q0 = 0.50

alpha = 0.05

! Define the initial layer normal and director

k0x = cos(q0)

k0y = 0.

k0z = sin(q0)

nx0 = 1.

ny0 = 0.

nz0 = 0.

! Open a file to store the data in

open (unit=110, file=’paran0_B=60_alpha=0.05.dat’, status= ’OLD’,ACCESS="SEQUENTIAL")

fold = 1.5

straininc = 0.001

STEPS = 400

do i = 0, STEPS-1

limp = 1. + i*straininc

! Find the energy minimum at the imposed strain by calling simann.

call simann(limp, f, xc)

! Convert the array xc into physical variables.

call conv_vars(xc, lxy, lxz, lyz, lzz, p)

lxx = limp

k1 = kx(lxx, lxy, lxz, lyz, lzz)

k2 = ky(lxx, lxy, lxz, lyz, lzz)

k3 = kz(lxx, lxy, lxz, lyz, lzz)

c1 = cx(k1, k2, k3, p)

c2 = cy(k1, k2, k3, p)

c3 = cz(k1, k2, k3, p)

nx = k1* cos(q0) + c1 * sin(q0)

ny = k2* cos(q0) + c2 * sin(q0)

nz = k3* cos(q0) + c3 * sin(q0)

fnem = fnemenergy(k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz)

fss = fssenergy(k0x, k0y, k0z, nx0, ny0, nz0, nx, ny, nz, lxx, lxy, lxz, lyz, lzz)

fsm = fsmenergy(k0x, k0y, k0z, lxx, lxy, lxz, lyz, lzz)

20 format(E20.5,1X, E20.5,1X, E20.5,1X, E20.5,1X, E20.5,1X, E20.5,1X, &

&E20.5,1X, E20.5,1X, E20.5,1X, F11.6,2X, F11.6,2X,E20.5,1X,&

&E20.5,1X,E20.5,1X,E20.5,1X,E20.5,1X,E20.5,1X, E20.5,1X,E20.5 &

&,1X,E20.5,1X)

write(110,20) limp, lxy, lxz, lyz, 1/(limp*lzz), lzz, nx, ny, nz, f, (f-fold)/straininc,&

& nx**2+ny**2+nz**2, nx*k1+ny*k2+nz*k3, k1, k2, k3, fnem, fsm, fss, p

fold = f

enddo

end program main



Appendix B

Compositional Fluctuations Model of

Biaxial LCE

A biaxial LCE has different polymer anisotropy tensor lengths in the two directions perpendicular
to the director, see figure B.1.
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Figure B.1: The biaxial shape ellipsoid has semi-axis length
√
1− p

2 in direction k and semi-axis

length
√
1 + p

2 in direction m.

We can write down the biaxial anisotropy step-length tensor, ℓ0, and its inverse, ℓ−1,

ℓ0 = δ + (< r > −1)n0 n
T
0 +

< p >

2
m0m

T
0 − < p >

2
k0 k

T
0 , (B.1)

ℓ−1 =
1

< r >
nnT +

1

1 + <p>
2

mmT +
1

1− <p>
2

k kT , (B.2)

where < r > and < p > are the mean chain anisotropies.

Now consider the step-length tensors of only the νth polymer chain. The simplest model takes r(ν)

and p(ν) as independent of each other,

ℓ
(ν)
0 = δ + (r(ν) − 1)n0 n

T
0 +

p(ν)

2
m0m

T
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2
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T
0 , (B.3)

ℓ−1(ν) =
1

r(ν)
nnT +

1

1 + p(ν)

2

mmT +
1

1− p(ν)

2

k kT . (B.4)
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The step-length tensors for the νth polymer chain can also be written as,
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The free energy density is the average over all polymer chains,

Fel ∼< Tr[λ · ℓ(ν)0 · λT · ℓ−1(ν)] >ν . (B.7)

So the free energy density can be written as,
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Expanding out this expression for the free energy density leads to 16 terms.
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Terms (2), (3), (4), (7), (8), (10), (14) average to zero (assuming r(ν) and p(ν) are independent
variables).
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Altogether the free energy density is,
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In finality the biaxial semi-softness term is,
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If we had assumed that r(ν) and p(ν) were not independent then the terms in Fss would still all be
present, but weighted by different factors.

Due to the convexity of 1
r the factor
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is positive.
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are also positive.



Appendix C

Smectic-A Finite Element Material

Routine

The smectic-A elastomer material model encoded as a user subroutine, uanisohyper smecticA.f,
is given here. An example input file, smecticA.inp, is also included. Using Abaqus 6.10 the
simulation can be run from the command-line with,

"/scratch/Commands/abaqus job=SmA input=smecticA.inp user=uanisohyper_smecticA.f".

The input file specifies the case of stretching of a unit cube of smectic-A elastomer between rigid
clamps. The geometry of the stretch is as follows. Two nodes, A at (0,0,0) and B at (1,1,1),
are defined at corners of the unit cube. The “x=0” and “x=1” faces of the cube are rigidly
kinematically constrained to nodes A and B respectively. During the stretching step node A is
stationary, whereas node B is displaced a distance of 0.64 in the x-direction; stretching the cube
the in x-direction. The cube is meshed with only two C3D8H elements; the faces of the elements
meet on the x=0.5 plane.

The material, UANISO SMA, is defined to use the invariant formulation of anisotropic hyperelasticity,
i.e. it calls a UANISOHYPER INV user subroutine. It is important that incompressibility is enforced,
as the smectic-A model requires this. The material is specified with one anisotropy direction,
corresponding to the initial layer normal direction. The orientation of the anisotropy direction,
ori-1, is given here as the x-direction. The material parameters are r = 2.0, B/µ = 60.0 and
cMR = 0.14.

The parameter, depvar=7, sets the number of components held by the SDV array. Nodal forces
and displacements are output to the output database file, as well as engineering strains, stresses
and the contents of the SDV array.

Example input file: smecticA.inp

*Heading

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Elastomer

*Node

1, 0.5, 0., 0.

2, 0.5, 0., 1.

3, 0., 0., 1.

4, 0., 0., 0.

5, 0.5, 1., 1.

6, 0., 1., 1.

7, 0., 1., 0.

8, 0.5, 1., 0.

9, 1., 1., 1.

10, 1., 0., 1.
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11, 1., 0., 0.

12, 1., 1., 0.

*Element, type=C3D8H

1, 8, 5, 6, 7, 1, 2, 3, 4

2, 5, 2, 1, 8, 9, 10, 11, 12

*Nset, nset=A

4,

*Nset, nset=B

9,

*Nset, nset=All, generate

1, 12, 1

*Elset, elset=All

1, 2

*Elset, elset="_x=0_S5", internal

1,

*Surface, type=ELEMENT, name="x=0"

"_x=0_S5", S5

*Elset, elset="_x=1_S2", internal

2,

*Surface, type=ELEMENT, name="x=1"

"_x=1_S2", S2

*orientation,name=ori-1,local directions=1

1.0,0.0,0.0,0.0,1.0,0.0

3,0.0

1,0,0

** Section: Section-1

*solid section, elset=All, material=UANISO_SMA,orientation=ori-1

1.

*End Part

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Elastomer-1, part=Elastomer

*End Instance

**

*Node

1, 0., 0., 0.

*Node

2, 1., 1., 1.

** Constraint: A_to_x=0

*Coupling, constraint name="A_to_x=0", ref node=Elastomer-1.A, surface=Elastomer-1."x=0"

*Kinematic

** Constraint: B_to_x=1

*Coupling, constraint name="B_to_x=1", ref node=Elastomer-1.B, surface=Elastomer-1."x=1"

*Kinematic

*End Assembly

**

** MATERIALS

**

*material,name=UANISO_SMA

*anisotropic hyperelastic,user,formulation=invariant, local directions=1,type=incompressible,properties=3

2.0,60.0,0.14

*DEPVAR

7

** ----------------------------------------------------------------

**

** STEP: Stretch

**

*Step, name=Stretch, nlgeom=YES, inc=400

*Static

0.01, 1., 1e-05, 0.01

**

** BOUNDARY CONDITIONS

**

** Name: Fix_A Type: Displacement/Rotation

*Boundary

Elastomer-1.A, 1, 1

Elastomer-1.A, 2, 2

Elastomer-1.A, 3, 3

Elastomer-1.A, 4, 4
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Elastomer-1.A, 5, 5

Elastomer-1.A, 6, 6

** Name: Move_B Type: Displacement/Rotation

*Boundary

Elastomer-1.B, 1, 1, 0.64

Elastomer-1.B, 2, 2

Elastomer-1.B, 3, 3

Elastomer-1.B, 4, 4

Elastomer-1.B, 5, 5

Elastomer-1.B, 6, 6

**

** OUTPUT REQUESTS

**

*Restart, write, frequency=0

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

RF, U

*Element Output, directions=YES

NE, S, SDV

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history

*Energy Output

ALLAE,

*End Step

Smectic-A Elastomer Material Subroutine: uanisohyper smecticA.f

c This material model encodes the smectic-A elastomer energy, of theorem 1.2. in

c "Relaxation of some transversally isotropic energies and applications to smectic-A elastomers" (2007).

c An additional energy term, cmu*Ainv(2), has been included to

c account for the energy of deforming post-buckled layers.

c The energy is written in terms of five invariants, Ainv(1) to Ainv(5).

c The parameter b is defined with a small epsilon parameter included

c inside the square root term, to avoid subtractive cancellation errors.

c The routine must be used with incompressiblity enforced on the input file.

subroutine uanisohyper_inv (ainv, ua, zeta, nfibers, ninv,

$ ui1, ui2, ui3, temp, noel, cmname, incmpflag, ihybflag,

$ numstatev, statev, numfieldv, fieldv, fieldvinc,

$ numprops, props)

include ’aba_param.inc’

character*80 cmname, CHARV

dimension ua(2), ainv(ninv), ui1(ninv),

$ ui2(ninv*(ninv+1)/2), ui3(ninv*(ninv+1)/2),

$ statev(numstatev), fieldv(numfieldv),

$ fieldvinc(numfieldv),props(numprops),

$ INTV(ninv),REALV(ninv)

c ainv: invariants

c ua : energies ua(1): utot, ua(2); udev

c ui1 : dUdI

c ui2 : d2U/dIdJ

c ui3 : not used for regular elements; for hybrid define d3U/dJ3

parameter ( half = 0.5d0,

* zero = 0.d0,

* one = 1.d0,

* two = 2.d0,

* three= 3.d0,

* four = 4.d0,

* five = 5.d0,

* six = 6.d0,

* twt4 = 24.d0,

* index_I1 = 1,
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* index_I2 = 2,

* index_J = 3 )

DOUBLE PRECISION k, r, d0, Bmu, lambda, Cmu, Q, t

Integer noel

c The material parameter values are read in here.

c r is the polymer anisotropy

c Bmu is B divided by mu

c Cmu the Mooney-Rivlin coefficient

r = props(1)

Bmu = props(2)

Cmu = props(3)

rI1 = ainv(index_I1)

rI2 = ainv(index_I2)

rJ = ainv(index_J )

rI1m3 = rI1 - three

rI2m3 = rI2 - three

rJm1 = rJ - one

c Calculate the value of k.

k = (Bmu**4*r**0.3333333333333333)/(1 + Bmu - r)**3

c Calculate the value of the initial layer spacing q.

d0 = (one + (one - r)/Bmu)/r**0.3333333333333333

c Calculate the value of lambda_0

lambda = Sqrt(d0/4. - 1/(4.*k) +

- Sqrt((1 - d0*k)**2/(4.*k**2) -

- (4*2**0.3333333333333333)/

- (-27 + 54*d0*k - 27*d0**2*k**2 +

- Sqrt(6912*k**3 + 729*(1 - d0*k)**4))**

- 0.3333333333333333 +

- (-27 + 54*d0*k - 27*d0**2*k**2 +

- Sqrt(6912*k**3 + 729*(1 - d0*k)**4))**

- 0.3333333333333333/

- (3.*2**0.3333333333333333*k))/2. +

- Sqrt((1 - d0*k)**2/(2.*k**2) +

- (4*2**0.3333333333333333)/

- (-27 + 54*d0*k - 27*d0**2*k**2 +

- Sqrt(6912*k**3 + 729*(1 - d0*k)**4))**

- 0.3333333333333333 -

- (-27 + 54*d0*k - 27*d0**2*k**2 +

- Sqrt(6912*k**3 + 729*(1 - d0*k)**4))**

- 0.3333333333333333/

- (3.*2**0.3333333333333333*k) -

- (1 - d0*k)**3/

- (4.*k**3*Sqrt((1 - d0*k)**2/(4.*k**2) -

- (4*2**0.3333333333333333)/

- (-27 + 54*d0*k - 27*d0**2*k**2 +

- Sqrt(6912*k**3 + 729*(1 - d0*k)**4))**

- 0.3333333333333333 +

- (-27 + 54*d0*k - 27*d0**2*k**2 +

- Sqrt(6912*k**3 + 729*(1 - d0*k)**4))**

- 0.3333333333333333/

- (3.*2**0.3333333333333333*k))))/2.)

c The parameter t is defined here to be (lambda_0)**-6,

c It is used to rescale the energy; changing its equilibrium point.

t= lambda**(-6.0)

c Values of parameters during intermediate analysis steps can be output to the .msg file, e.g.

c REALV(1) = b

c REALV(2) = d

c INTV(1) = noel

c CALL STDB_ABQERR(1," %R %R %I #b,d,noel",INTV,REALV,CHARV)

c The Epsilon parameter inside the square-root term of b is called Epslo1.

Epslo1 = 1.D-5

c The invariant terms inside the square-root term of b are called Q.

c It is important to ensure Q is positive.

Q = (Ainv(1)+Ainv(4))**2 - 4*(Ainv(2)+Ainv(5))

Q = Max(0.0,Q)

c Here b and d represent the high temperature b and d values, i.e. these are not btilde and dtilde

b = (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))/
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- (2.*t**0.3333333333333333)

c

d = ((Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))**0.5/

- t**0.3333333333333333

c Test if the point is inside the asymmetric solid region (AS)

IF(d.GE.k*b*d0/(k*b+1)) THEN

c STATEV(1) outputs the region of the energy, AS=1, UB=2, BB=3.

STATEV(1)=1.00000

c ua(2) represents the AS energy

ua(2)= b + d**2/b + (d - d0)**2*k +

- t**0.6666666666666666*Ainv(4)

ua(2)= ua(2) + Cmu*Ainv(2)

c ui1 contains the first derivatives of the AS energy

ui1(1) = (1 - (4*Ainv(4))/(Sqrt(epslo1 + Q) +

- Ainv(1) - Ainv(4)) +

- (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q) -

- (4*(1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- 2*k*Ainv(4)*(-t**(-0.3333333333333333) +

- d0/Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (2.*t**0.3333333333333333)

c

ui1(2) = ((epslo1 + Q - Ainv(1)**2 + 4*Ainv(2) -

- 2*Ainv(1)*Ainv(4) -

- Ainv(4)**2 + 4*Ainv(5))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- k*(t**(-0.3333333333333333) -

- d0/Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- t**0.3333333333333333

c

ui1(3) = zero

c

ui1(4) = (-1 + 2*t - (4*Ainv(1))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)) +

- (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q) -

- (4*(-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- 2*k*Ainv(1)*(-t**(-0.3333333333333333) +

- d0/Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (2.*t**0.3333333333333333)

c

ui1(5) = ((epslo1 + Q - Ainv(1)**2 + 4*Ainv(2) -

- 2*Ainv(1)*Ainv(4) -

- Ainv(4)**2 + 4*Ainv(5))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- k*(t**(-0.3333333333333333) -

- d0/Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- t**0.3333333333333333

c

ui1(1)= ui1(1)

c

ui1(2)= ui1(2) + Cmu

c

ui1(3)= ui1(3)

c

ui1(4)= ui1(4)

c

ui1(5)= ui1(5)

c ui2 contains the second derivatives

ui2(1) = ((8*t**0.3333333333333333*Ainv(4)*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- (t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- (epslo1 + Q)**1.5 +
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- (4*t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2)*

- (-Ainv(2) + Ainv(1)*Ainv(4) - Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (k*Ainv(4)**2)/(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) +

- (8*t**0.3333333333333333*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))**2*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**3 -

- (k*Ainv(4)**2*(-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(2) = ((-8*t**0.3333333333333333*Ainv(4))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (2*t**0.3333333333333333*(Ainv(1) + Ainv(4)))/

- (epslo1 + Q)**1.5 -

- (4*t**0.3333333333333333*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- (16*t**0.3333333333333333*

- (Sqrt(epslo1 + Q) + Ainv(1) + Ainv(4))*

- (-Ainv(2) + Ainv(1)*Ainv(4) - Ainv(5)))/

- ((epslo1 + Q)*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**

- 3) - (k*Ainv(4))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) -

- (8*t**0.3333333333333333*(Ainv(1) + Ainv(4))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (k*Ainv(4)*(-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(4) = zero

c

ui2(7) = ((-4*t**0.3333333333333333)/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)) +

- (4*t**0.3333333333333333*Ainv(4)*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- (4*t**0.3333333333333333*Ainv(1)*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- (t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- (epslo1 + Q)**1.5 +

- (4*t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2)*

- (-Ainv(2) + Ainv(1)*Ainv(4) - Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (k*Ainv(1)*Ainv(4))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) +

- (8*t**0.3333333333333333*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**3 +

- 2*k*(-1 + (d0*t**0.3333333333333333)/

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))) -

- (k*Ainv(1)*Ainv(4)*

- (-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(11) = ((-8*t**0.3333333333333333*Ainv(4))/
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- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (2*t**0.3333333333333333*(Ainv(1) + Ainv(4)))/

- (epslo1 + Q)**1.5 -

- (4*t**0.3333333333333333*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- (16*t**0.3333333333333333*

- (Sqrt(epslo1 + Q) + Ainv(1) + Ainv(4))*

- (-Ainv(2) + Ainv(1)*Ainv(4) - Ainv(5)))/

- ((epslo1 + Q)*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**

- 3) - (k*Ainv(4))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) -

- (8*t**0.3333333333333333*(Ainv(1) + Ainv(4))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (k*Ainv(4)*(-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(3) = ((d0*k)/(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5 -

- 4/(epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5)))**1.5 +

- (32*(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5)))*

- (Ainv(1) - Ainv(4) +

- Sqrt(epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5))))**3) +

- (16*(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5)))**1.5*

- (Ainv(1) - Ainv(4) +

- Sqrt(epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5))))**2) +

- 16/(Sqrt(epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5)))*

- (Ainv(1) - Ainv(4) +

- Sqrt(epslo1 + (Ainv(1) + Ainv(4))**2 -

- 4*(Ainv(2) + Ainv(5))))**2))/

- (2.*t**0.3333333333333333)

c

ui2(5) = zero

c

ui2(8) = ((-8*t**0.3333333333333333*Ainv(1))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (2*t**0.3333333333333333*(Ainv(1) + Ainv(4)))/

- (epslo1 + Q)**1.5 -

- (4*t**0.3333333333333333*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 -

- (k*Ainv(1))/(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) -

- (8*t**0.3333333333333333*(Ainv(1) + Ainv(4))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) -

- (16*t**0.3333333333333333*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**3) +

- (k*Ainv(1)*(-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(12) = (-4/(epslo1 + Q)**1.5 +

- 16/

- (Sqrt(epslo1 + Q)*
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- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (d0*k)/(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5 +

- (32*(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)*(Sqrt(epslo1 + Q) + Ainv(1) -

- Ainv(4))**3) +

- (16*(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2))/

- (2.*t**0.3333333333333333)

c

ui2(6) = zero

c

ui2(9) = zero

c

ui2(13) = zero

c

ui2(10) = ((8*t**0.3333333333333333*Ainv(1)*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 +

- (t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- (epslo1 + Q)**1.5 +

- (4*t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2)*

- (-Ainv(2) + Ainv(1)*Ainv(4) - Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (k*Ainv(1)**2)/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) +

- (8*t**0.3333333333333333*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))**2*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**3 -

- (k*Ainv(1)**2*(-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(14) = ((-8*t**0.3333333333333333*Ainv(1))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (2*t**0.3333333333333333*(Ainv(1) + Ainv(4)))/

- (epslo1 + Q)**1.5 -

- (4*t**0.3333333333333333*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2 -

- (k*Ainv(1))/(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)) -

- (8*t**0.3333333333333333*(Ainv(1) + Ainv(4))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) -

- (16*t**0.3333333333333333*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q))*

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**3) +

- (k*Ainv(1)*(-(d0*t**0.3333333333333333) +

- Sqrt(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))))/

- (Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5)/

- (2.*t**0.6666666666666666)

c

ui2(15) = (-4/(epslo1 + Q)**1.5 +

- 16/

- (Sqrt(epslo1 + Q)*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2) +

- (d0*k)/(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5))**1.5 +

- (32*(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)*(Sqrt(epslo1 + Q) + Ainv(1) -

- Ainv(4))**3) +

- (16*(Ainv(2) - Ainv(1)*Ainv(4) + Ainv(5)))/

- ((epslo1 + Q)**1.5*

- (Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))**2))/
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- (2.*t**0.3333333333333333)

c

ui2(1) = ui2(1)

c

ui2(2) = ui2(2)

c

ui2(4) = ui2(4)

c

ui2(7) = ui2(7)

c

ui2(11) = ui2(11)

c

ui2(3) = ui2(3)

c

ui2(5) = ui2(5)

c

ui2(8) = ui2(8)

c

ui2(12) = ui2(12)

c

ui2(6) = ui2(6)

c

ui2(9) = ui2(9)

c

ui2(13) = ui2(13)

c

ui2(10) = ui2(10)

c

ui2(14) = ui2(14)

c

ui2(15) = ui2(15)

c

c Test to see material is in the UB region of the energy

else if(b.GE.d0-(one/k)) THEN

STATEV(1)=2.00000

c This is the UB region energy

ua(2)= b + (d0**2*k)/(1 + b*k) +

- Ainv(4)*t**0.6666666666666666

ua(2)= ua(2) + Cmu*Ainv(2)

c First Derivatives

ui1(1) = ((1 - (d0**2*k**2)/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**2)*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (2.*t**0.3333333333333333)

c

ui1(2) = (-1 + (d0**2*k**2)/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**2)/

- (Sqrt(epslo1 + Q)*t**0.3333333333333333)

c

ui1(3) = zero

c

ui1(4) = (-1 + 2*t + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q) -

- (d0**2*k**2*(-1 +

- (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**2)/

- (2.*t**0.3333333333333333)

c

ui1(5) = (-1 + (d0**2*k**2)/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**2)/

- (Sqrt(epslo1 + Q)*t**0.3333333333333333)

c

ui1(1)= ui1(1)

c

ui1(2)= ui1(2) + Cmu

c

ui1(3)= ui1(3)

c



APPENDIX C. SMECTIC-A FINITE ELEMENT MATERIAL ROUTINE 112

ui1(4)= ui1(4)

c

ui1(5)= ui1(5)

c Second Derivatives

ui2(1) = ((d0**2*k**3*(1 + (Ainv(1) + Ainv(4))/

- Sqrt(epslo1 + Q))**

- 2)/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**3 +

- (t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- (epslo1 + Q)**1.5 -

- (4*d0**2*k**2*t*(epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- ((epslo1 + Q)**1.5*

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2))/

- (2.*t**0.6666666666666666)

c

ui2(2) = (t**0.3333333333333333*(Ainv(1) + Ainv(4)) -

- (4*d0**2*k**2*t*(Ainv(1) + Ainv(4)))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2 -

- (8*d0**2*k**3*Sqrt(epslo1 + Q)*t*

- (Sqrt(epslo1 + Q) + Ainv(1) + Ainv(4)))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**3)/

- ((epslo1 + Q)**1.5*t**0.6666666666666666)

c

ui2(4) = zero

c

ui2(7) = ((d0**2*k**3*(-1 + (Ainv(1) + Ainv(4))/

- Sqrt(epslo1 + Q))*

- (1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**3 +

- (t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- (epslo1 + Q)**1.5 -

- (4*d0**2*k**2*t*(epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- ((epslo1 + Q)**1.5*

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2))/

- (2.*t**0.6666666666666666)

c

ui2(11) = (t**0.3333333333333333*(Ainv(1) + Ainv(4)) -

- (4*d0**2*k**2*t*(Ainv(1) + Ainv(4)))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2 -

- (8*d0**2*k**3*Sqrt(epslo1 + Q)*t*

- (Sqrt(epslo1 + Q) + Ainv(1) + Ainv(4)))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**3)/

- ((epslo1 + Q)**1.5*t**0.6666666666666666)

c

ui2(3) = (2*(-1 + (4*d0**2*k**2*t**0.6666666666666666*

- (2*t**0.3333333333333333 +

- k*(3*Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**3))/

- ((epslo1 + Q)**1.5*t**0.3333333333333333)

c

ui2(5) = zero

c

ui2(8) = (t**0.3333333333333333*(Ainv(1) + Ainv(4)) -

- (4*d0**2*k**2*t*(Ainv(1) + Ainv(4)))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2 -

- (d0**2*k**3*(epslo1 + Q)*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**3)/

- ((epslo1 + Q)**1.5*t**0.6666666666666666)
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c

ui2(12) = (2*(-1 + (4*d0**2*k**2*t**0.6666666666666666*

- (2*t**0.3333333333333333 +

- k*(3*Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**3))/

- ((epslo1 + Q)**1.5*t**0.3333333333333333)

c

ui2(6) = zero

c

ui2(9) = zero

c

ui2(13) = zero

c

ui2(10) = ((d0**2*k**3*(-1 + (Ainv(1) + Ainv(4))/

- Sqrt(epslo1 + Q))**

- 2)/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**3 +

- (t**0.3333333333333333*

- (epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- (epslo1 + Q)**1.5 -

- (4*d0**2*k**2*t*(epslo1 + Q - (Ainv(1) + Ainv(4))**2))/

- ((epslo1 + Q)**1.5*

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2))/

- (2.*t**0.6666666666666666)

c

ui2(14) = (t**0.3333333333333333*(Ainv(1) + Ainv(4)) -

- (4*d0**2*k**2*t*(Ainv(1) + Ainv(4)))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**2 -

- (d0**2*k**3*(epslo1 + Q)*

- (-1 + (Ainv(1) + Ainv(4))/Sqrt(epslo1 + Q)))/

- (1 + (k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))/

- (2.*t**0.3333333333333333))**3)/

- ((epslo1 + Q)**1.5*t**0.6666666666666666)

c

ui2(15) = (2*(-1 + (4*d0**2*k**2*t**0.6666666666666666*

- (2*t**0.3333333333333333 +

- k*(3*Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4))))/

- (2*t**0.3333333333333333 +

- k*(Sqrt(epslo1 + Q) + Ainv(1) - Ainv(4)))**3))/

- ((epslo1 + Q)**1.5*t**0.3333333333333333)

c

ui2(1) = ui2(1)

c

ui2(2) = ui2(2)

c

ui2(4) = ui2(4)

c

ui2(7) = ui2(7)

c

ui2(11) = ui2(11)

c

ui2(3) = ui2(3)

c

ui2(5) = ui2(5)

c

ui2(8) = ui2(8)

c

ui2(12) = ui2(12)

c

ui2(6) = ui2(6)

c

ui2(9) = ui2(9)

c

ui2(13) = ui2(13)

c

ui2(10) = ui2(10)

c

ui2(14) = ui2(14)
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c

ui2(15) = ui2(15)

c

c If the material was not in the AS or UB regions then it must be in the BB region.

else

STATEV(1)=3.00000

c This is the BB region energy.

ua(2)= 2*d0 - 1/k + Ainv(4)*t**0.6666666666666666

ua(2)= ua(2) + Cmu*Ainv(2)

c First Derivatives

ui1(1) = zero

c

ui1(2) = zero

c

ui1(3) = zero

c

ui1(4) = t**0.6666666666666666

c

ui1(5) = zero

c

ui1(1)= ui1(1)

c

ui1(2)= ui1(2) + Cmu

c

ui1(3)= ui1(3)

c

ui1(4)= ui1(4)

c

ui1(5)= ui1(5)

c Second Derivatives

ui2(1) = zero

c

ui2(2) = zero

c

ui2(4) = zero

c

ui2(7) = zero

c

ui2(11) = zero

c

ui2(3) = zero

c

ui2(5) = zero

c

ui2(8) = zero

c

ui2(12) = zero

c

ui2(6) = zero

c

ui2(9) = zero

c

ui2(13) = zero

c

ui2(10) = zero

c

ui2(14) = zero

c

ui2(15) = zero

c

ui2(1) = ui2(1)

c

ui2(2) = ui2(2)

c

ui2(4) = ui2(4)

c

ui2(7) = ui2(7)

c

ui2(11) = ui2(11)

c

ui2(3) = ui2(3)
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c

ui2(5) = ui2(5)

c

ui2(8) = ui2(8)

c

ui2(12) = ui2(12)

c

ui2(6) = ui2(6)

c

ui2(9) = ui2(9)

c

ui2(13) = ui2(13)

c

ui2(10) = ui2(10)

c

ui2(14) = ui2(14)

c

ui2(15) = ui2(15)

End if

c It is helpful to output a few solution dependent variables, e.g. k,t,b,d.

c Ainv(3) is a useful way to check that incompressibility is enforced.

STATEV(2)=Ainv(3)

STATEV(3)=k

STATEV(4)=t

STATEV(5)=b

STATEV(6)=d

STATEV(7)=Sqrt(epslo1 + (Ainv(1) +

- Ainv(4))**2 - 4*(Ainv(2) + Ainv(5)))

return

end



Appendix D

Smectic-C Elastomer Polydomain Model

The uniaxial stretching and shear experiments of Sánchez-Ferrer and Finkelmann were performed
on smectic-C, main-chain LCE with a domain microstructure. The pseudo-monodomain samples
studied have a uniform director n0 = z and a conical distribution of layer normals arranged at an
angle θ0 to n0, see figure D.1.

y
x

z
θ0

n0 k0

Figure D.1: Initial conical distribution of layer normals around the director.

The microstructure complicates the calculation of the stiffness of polydomain samples; as it would
require modelling of the internal boundary structure.

It is possible to obtain a maximum and minimum bound on the stiffness of a polydomain by
considering the Taylor and Sachs bounds respectively [103, 104]. These bounds work by ignoring
the compatibility of the domain microstructure. The true behaviour of the sample should lie
somewhere between the Taylor and Sachs regimes.

Taylor and Sachs Bounds

The Taylor bound is an upper bound to the stiffness of a polydomain sample; the monodomains are
removed from the polydomain structure and strained in parallel between two plates, see figure D.2.
The stiffest domains dictate the stiffness in a parallel arrangement, and this gives an upper limit
for the energy required to deform a polydomain sample.

The Sachs bound is a lower bound to the stiffness of a polydomain sample; the monodomains are
removed from the polydomain structure and strained in series, see figure D.3. It is only the softest
domains that dictate the overall deformation, giving a low energy bound.

A computational simulation could set bounds on the mechanical properties of a smectic-C LCE
polydomain sample under uniaxial deformation. The x-ray scattering patterns could then be cal-
culated to allow experimental comparison.
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λzz

λzz

λzz

λzz

Figure D.2: A representation of the Taylor bound approximation; all domains experience the same
strain. Two domains are shown with their smectic layering included.

λzz

λzz

λzz

λzz

Figure D.3: A representation of the Sachs bound approximation; all domains experience the same
external stress.
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